import torch import torch.nn as nn import numpy as np from typing import Tuple, Union, Optional from diffusers.models.embeddings import get_3d_sincos_pos_embed, get_1d_rotary_pos_embed class CogVideoXPatchEmbed(nn.Module): def __init__( self, patch_size: int = 2, patch_size_t: Optional[int] = None, in_channels: int = 16, embed_dim: int = 1920, text_embed_dim: int = 4096, bias: bool = True, sample_width: int = 90, sample_height: int = 60, sample_frames: int = 49, temporal_compression_ratio: int = 4, max_text_seq_length: int = 226, spatial_interpolation_scale: float = 1.875, temporal_interpolation_scale: float = 1.0, use_positional_embeddings: bool = True, use_learned_positional_embeddings: bool = True, ) -> None: super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.embed_dim = embed_dim self.sample_height = sample_height self.sample_width = sample_width self.sample_frames = sample_frames self.temporal_compression_ratio = temporal_compression_ratio self.max_text_seq_length = max_text_seq_length self.spatial_interpolation_scale = spatial_interpolation_scale self.temporal_interpolation_scale = temporal_interpolation_scale self.use_positional_embeddings = use_positional_embeddings self.use_learned_positional_embeddings = use_learned_positional_embeddings if patch_size_t is None: # CogVideoX 1.0 checkpoints self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) else: # CogVideoX 1.5 checkpoints self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim) self.text_proj = nn.Linear(text_embed_dim, embed_dim) if use_positional_embeddings or use_learned_positional_embeddings: persistent = use_learned_positional_embeddings pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames) self.register_buffer("pos_embedding", pos_embedding, persistent=persistent) def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor: post_patch_height = sample_height // self.patch_size post_patch_width = sample_width // self.patch_size post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1 num_patches = post_patch_height * post_patch_width * post_time_compression_frames pos_embedding = get_3d_sincos_pos_embed( self.embed_dim, (post_patch_width, post_patch_height), post_time_compression_frames, self.spatial_interpolation_scale, self.temporal_interpolation_scale, ) pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1) joint_pos_embedding = torch.zeros( 1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False ) joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding) return joint_pos_embedding def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): r""" Args: text_embeds (`torch.Tensor`): Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). image_embeds (`torch.Tensor`): Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). """ text_embeds = self.text_proj(text_embeds) batch_size, num_frames, channels, height, width = image_embeds.shape if self.patch_size_t is None: image_embeds = image_embeds.reshape(-1, channels, height, width) image_embeds = self.proj(image_embeds) image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:]) image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] else: p = self.patch_size p_t = self.patch_size_t image_embeds = image_embeds.permute(0, 1, 3, 4, 2) image_embeds = image_embeds.reshape( batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels ) image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3) image_embeds = self.proj(image_embeds) embeds = torch.cat( [text_embeds, image_embeds], dim=1 ).contiguous() # [batch, seq_length + num_frames x height x width, channels] if self.use_positional_embeddings or self.use_learned_positional_embeddings: if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height): raise ValueError( "It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'." "If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues." ) pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 if ( self.sample_height != height or self.sample_width != width or self.sample_frames != pre_time_compression_frames ): pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames) pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype) else: pos_embedding = self.pos_embedding embeds = embeds + pos_embedding return embeds def get_3d_rotary_pos_embed( embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True, grid_type: str = "linspace", max_size: Optional[Tuple[int, int]] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ RoPE for video tokens with 3D structure. Args: embed_dim: (`int`): The embedding dimension size, corresponding to hidden_size_head. crops_coords (`Tuple[int]`): The top-left and bottom-right coordinates of the crop. grid_size (`Tuple[int]`): The grid size of the spatial positional embedding (height, width). temporal_size (`int`): The size of the temporal dimension. theta (`float`): Scaling factor for frequency computation. grid_type (`str`): Whether to use "linspace" or "slice" to compute grids. Returns: `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`. """ if use_real is not True: raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed") if grid_type == "linspace": start, stop = crops_coords grid_size_h, grid_size_w = grid_size grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32) grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32) grid_t = np.arange(temporal_size, dtype=np.float32) grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32) elif grid_type == "slice": max_h, max_w = max_size grid_size_h, grid_size_w = grid_size grid_h = np.arange(max_h, dtype=np.float32) grid_w = np.arange(max_w, dtype=np.float32) grid_t = np.arange(temporal_size, dtype=np.float32) else: raise ValueError("Invalid value passed for `grid_type`.") # Compute dimensions for each axis dim_t = embed_dim // 4 dim_h = embed_dim // 8 * 3 dim_w = embed_dim // 8 * 3 # Temporal frequencies freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True) # Spatial frequencies for height and width freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True) freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True) # BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor def combine_time_height_width(freqs_t, freqs_h, freqs_w): freqs_t = freqs_t[:, None, None, :].expand( -1, grid_size_h, grid_size_w, -1 ) # temporal_size, grid_size_h, grid_size_w, dim_t freqs_h = freqs_h[None, :, None, :].expand( temporal_size, -1, grid_size_w, -1 ) # temporal_size, grid_size_h, grid_size_2, dim_h freqs_w = freqs_w[None, None, :, :].expand( temporal_size, grid_size_h, -1, -1 ) # temporal_size, grid_size_h, grid_size_2, dim_w freqs = torch.cat( [freqs_t, freqs_h, freqs_w], dim=-1 ) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w) freqs = freqs.view( temporal_size * grid_size_h * grid_size_w, -1 ) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w) return freqs t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w if grid_type == "slice": t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size] h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h] w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w] cos = combine_time_height_width(t_cos, h_cos, w_cos) sin = combine_time_height_width(t_sin, h_sin, w_sin) return cos, sin