import os import torch import json from einops import rearrange from contextlib import nullcontext from .utils import log, check_diffusers_version, print_memory check_diffusers_version() from diffusers.schedulers import ( CogVideoXDDIMScheduler, CogVideoXDPMScheduler, DDIMScheduler, PNDMScheduler, DPMSolverMultistepScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, UniPCMultistepScheduler, HeunDiscreteScheduler, SASolverScheduler, DEISMultistepScheduler, LCMScheduler ) scheduler_mapping = { "DPM++": DPMSolverMultistepScheduler, "Euler": EulerDiscreteScheduler, "Euler A": EulerAncestralDiscreteScheduler, "PNDM": PNDMScheduler, "DDIM": DDIMScheduler, "CogVideoXDDIM": CogVideoXDDIMScheduler, "CogVideoXDPMScheduler": CogVideoXDPMScheduler, "SASolverScheduler": SASolverScheduler, "UniPCMultistepScheduler": UniPCMultistepScheduler, "HeunDiscreteScheduler": HeunDiscreteScheduler, "DEISMultistepScheduler": DEISMultistepScheduler, "LCMScheduler": LCMScheduler } available_schedulers = list(scheduler_mapping.keys()) from diffusers.video_processor import VideoProcessor import folder_paths import comfy.model_management as mm script_directory = os.path.dirname(os.path.abspath(__file__)) if not "CogVideo" in folder_paths.folder_names_and_paths: folder_paths.add_model_folder_path("CogVideo", os.path.join(folder_paths.models_dir, "CogVideo")) if not "cogvideox_loras" in folder_paths.folder_names_and_paths: folder_paths.add_model_folder_path("cogvideox_loras", os.path.join(folder_paths.models_dir, "CogVideo", "loras")) class CogVideoContextOptions: @classmethod def INPUT_TYPES(s): return {"required": { "context_schedule": (["uniform_standard", "uniform_looped", "static_standard"],), "context_frames": ("INT", {"default": 48, "min": 2, "max": 100, "step": 1, "tooltip": "Number of pixel frames in the context, NOTE: the latent space has 4 frames in 1"} ), "context_stride": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context stride as pixel frames, NOTE: the latent space has 4 frames in 1"} ), "context_overlap": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context overlap as pixel frames, NOTE: the latent space has 4 frames in 1"} ), "freenoise": ("BOOLEAN", {"default": True, "tooltip": "Shuffle the noise"}), } } RETURN_TYPES = ("COGCONTEXT", ) RETURN_NAMES = ("context_options",) FUNCTION = "process" CATEGORY = "CogVideoWrapper" def process(self, context_schedule, context_frames, context_stride, context_overlap, freenoise): context_options = { "context_schedule":context_schedule, "context_frames":context_frames, "context_stride":context_stride, "context_overlap":context_overlap, "freenoise":freenoise } return (context_options,) class CogVideoTransformerEdit: @classmethod def INPUT_TYPES(s): return {"required": { "remove_blocks": ("STRING", {"default": "15, 25, 37", "multiline": True, "tooltip": "Comma separated list of block indices to remove, 5b blocks: 0-41, 2b model blocks 0-29"} ), } } RETURN_TYPES = ("TRANSFORMERBLOCKS",) RETURN_NAMES = ("block_list", ) FUNCTION = "process" CATEGORY = "CogVideoWrapper" DESCRIPTION = "EXPERIMENTAL:Remove specific transformer blocks from the model" def process(self, remove_blocks): blocks_to_remove = [int(x.strip()) for x in remove_blocks.split(',')] log.info(f"Blocks selected for removal: {blocks_to_remove}") return (blocks_to_remove,) class CogVideoXTorchCompileSettings: @classmethod def INPUT_TYPES(s): return { "required": { "backend": (["inductor","cudagraphs"], {"default": "inductor"}), "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), }, } RETURN_TYPES = ("COMPILEARGS",) RETURN_NAMES = ("torch_compile_args",) FUNCTION = "loadmodel" CATEGORY = "MochiWrapper" DESCRIPTION = "torch.compile settings, when connected to the model loader, torch.compile of the selected layers is attempted. Requires Triton and torch 2.5.0 is recommended" def loadmodel(self, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit): compile_args = { "backend": backend, "fullgraph": fullgraph, "mode": mode, "dynamic": dynamic, "dynamo_cache_size_limit": dynamo_cache_size_limit, } return (compile_args, ) #region TextEncode class CogVideoTextEncode: @classmethod def INPUT_TYPES(s): return {"required": { "clip": ("CLIP",), "prompt": ("STRING", {"default": "", "multiline": True} ), }, "optional": { "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "force_offload": ("BOOLEAN", {"default": True}), } } RETURN_TYPES = ("CONDITIONING", "CLIP",) RETURN_NAMES = ("conditioning", "clip") FUNCTION = "process" CATEGORY = "CogVideoWrapper" def process(self, clip, prompt, strength=1.0, force_offload=True): max_tokens = 226 load_device = mm.text_encoder_device() offload_device = mm.text_encoder_offload_device() clip.tokenizer.t5xxl.pad_to_max_length = True clip.tokenizer.t5xxl.max_length = max_tokens clip.cond_stage_model.to(load_device) tokens = clip.tokenize(prompt, return_word_ids=True) embeds = clip.encode_from_tokens(tokens, return_pooled=False, return_dict=False) if embeds.shape[1] > max_tokens: raise ValueError(f"Prompt is too long, max tokens supported is {max_tokens} or less, got {embeds.shape[1]}") embeds *= strength if force_offload: clip.cond_stage_model.to(offload_device) return (embeds, clip, ) class CogVideoTextEncodeCombine: @classmethod def INPUT_TYPES(s): return {"required": { "conditioning_1": ("CONDITIONING",), "conditioning_2": ("CONDITIONING",), "combination_mode": (["average", "weighted_average", "concatenate"], {"default": "weighted_average"}), "weighted_average_ratio": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}), }, } RETURN_TYPES = ("CONDITIONING",) RETURN_NAMES = ("conditioning",) FUNCTION = "process" CATEGORY = "CogVideoWrapper" def process(self, conditioning_1, conditioning_2, combination_mode, weighted_average_ratio): if conditioning_1.shape != conditioning_2.shape: raise ValueError("conditioning_1 and conditioning_2 must have the same shape") if combination_mode == "average": embeds = (conditioning_1 + conditioning_2) / 2 elif combination_mode == "weighted_average": embeds = conditioning_1 * (1 - weighted_average_ratio) + conditioning_2 * weighted_average_ratio elif combination_mode == "concatenate": embeds = torch.cat((conditioning_1, conditioning_2), dim=-2) else: raise ValueError("Invalid combination mode") return (embeds, ) #region ImageEncode def add_noise_to_reference_video(image, ratio=None): if ratio is None: sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device) sigma = torch.exp(sigma).to(image.dtype) else: sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio image_noise = torch.randn_like(image) * sigma[:, None, None, None, None] image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise) image = image + image_noise return image class CogVideoImageEncode: @classmethod def INPUT_TYPES(s): return {"required": { "vae": ("VAE",), "start_image": ("IMAGE", ), }, "optional": { "end_image": ("IMAGE", ), "enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}), "noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, } RETURN_TYPES = ("LATENT",) RETURN_NAMES = ("samples",) FUNCTION = "encode" CATEGORY = "CogVideoWrapper" def encode(self, vae, start_image, end_image=None, enable_tiling=False, noise_aug_strength=0.0, strength=1.0, start_percent=0.0, end_percent=1.0): device = mm.get_torch_device() offload_device = mm.unet_offload_device() generator = torch.Generator(device=device).manual_seed(0) try: vae.enable_slicing() except: pass vae_scaling_factor = vae.config.scaling_factor if enable_tiling: from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling enable_vae_encode_tiling(vae) vae.to(device) try: vae._clear_fake_context_parallel_cache() except: pass latents_list = [] start_image = (start_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3) # B, C, T, H, W if noise_aug_strength > 0: start_image = add_noise_to_reference_video(start_image, ratio=noise_aug_strength) start_latents = vae.encode(start_image).latent_dist.sample(generator) start_latents = start_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W if end_image is not None: end_image = (end_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3) if noise_aug_strength > 0: end_image = add_noise_to_reference_video(end_image, ratio=noise_aug_strength) end_latents = vae.encode(end_image).latent_dist.sample(generator) end_latents = end_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W latents_list = [start_latents, end_latents] final_latents = torch.cat(latents_list, dim=1) else: final_latents = start_latents final_latents = final_latents * vae_scaling_factor * strength log.info(f"Encoded latents shape: {final_latents.shape}") vae.to(offload_device) return ({ "samples": final_latents, "start_percent": start_percent, "end_percent": end_percent }, ) class CogVideoImageEncodeFunInP: @classmethod def INPUT_TYPES(s): return {"required": { "vae": ("VAE",), "start_image": ("IMAGE", ), "num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}), }, "optional": { "end_image": ("IMAGE", ), "enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}), "noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}), }, } RETURN_TYPES = ("LATENT",) RETURN_NAMES = ("image_cond_latents",) FUNCTION = "encode" CATEGORY = "CogVideoWrapper" def encode(self, vae, start_image, num_frames, end_image=None, enable_tiling=False, noise_aug_strength=0.0): device = mm.get_torch_device() offload_device = mm.unet_offload_device() generator = torch.Generator(device=device).manual_seed(0) try: vae.enable_slicing() except: pass vae_scaling_factor = vae.config.scaling_factor if enable_tiling: from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling enable_vae_encode_tiling(vae) vae.to(device) try: vae._clear_fake_context_parallel_cache() except: pass if end_image is not None: # Create a tensor of zeros for padding padding = torch.zeros((num_frames - 2, start_image.shape[1], start_image.shape[2], 3), device=end_image.device, dtype=end_image.dtype) * -1 # Concatenate start_image, padding, and end_image input_image = torch.cat([start_image, padding, end_image], dim=0) else: # Create a tensor of zeros for padding padding = torch.zeros((num_frames - 1, start_image.shape[1], start_image.shape[2], 3), device=start_image.device, dtype=start_image.dtype) * -1 # Concatenate start_image and padding input_image = torch.cat([start_image, padding], dim=0) input_image = input_image * 2.0 - 1.0 input_image = input_image.to(vae.dtype).to(device) input_image = input_image.unsqueeze(0).permute(0, 4, 1, 2, 3) # B, C, T, H, W B, C, T, H, W = input_image.shape if noise_aug_strength > 0: input_image = add_noise_to_reference_video(input_image, ratio=noise_aug_strength) bs = 1 new_mask_pixel_values = [] for i in range(0, input_image.shape[0], bs): mask_pixel_values_bs = input_image[i : i + bs] mask_pixel_values_bs = vae.encode(mask_pixel_values_bs)[0] mask_pixel_values_bs = mask_pixel_values_bs.mode() new_mask_pixel_values.append(mask_pixel_values_bs) masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0) masked_image_latents = masked_image_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W mask = torch.zeros_like(masked_image_latents[:, :, :1, :, :]) if end_image is not None: mask[:, -1, :, :, :] = 0 mask[:, 0, :, :, :] = vae_scaling_factor final_latents = masked_image_latents * vae_scaling_factor log.info(f"Encoded latents shape: {final_latents.shape}") vae.to(offload_device) return ({ "samples": final_latents, "mask": mask },) #region Tora from .tora.traj_utils import process_traj, scale_traj_list_to_256 from torchvision.utils import flow_to_image class ToraEncodeTrajectory: @classmethod def INPUT_TYPES(s): return {"required": { "tora_model": ("TORAMODEL",), "vae": ("VAE",), "coordinates": ("STRING", {"forceInput": True}), "width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}), "height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}), "num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, "optional": { "enable_tiling": ("BOOLEAN", {"default": True}), } } RETURN_TYPES = ("TORAFEATURES", "IMAGE", ) RETURN_NAMES = ("tora_trajectory", "video_flow_images", ) FUNCTION = "encode" CATEGORY = "CogVideoWrapper" def encode(self, vae, width, height, num_frames, coordinates, strength, start_percent, end_percent, tora_model, enable_tiling=False): check_diffusers_version() device = mm.get_torch_device() offload_device = mm.unet_offload_device() generator = torch.Generator(device=device).manual_seed(0) try: vae.enable_slicing() except: pass try: vae._clear_fake_context_parallel_cache() except: pass if enable_tiling: from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling enable_vae_encode_tiling(vae) if len(coordinates) < 10: coords_list = [] for coords in coordinates: coords = json.loads(coords.replace("'", '"')) coords = [(coord['x'], coord['y']) for coord in coords] traj_list_range_256 = scale_traj_list_to_256(coords, width, height) coords_list.append(traj_list_range_256) else: coords = json.loads(coordinates.replace("'", '"')) coords = [(coord['x'], coord['y']) for coord in coords] coords_list = scale_traj_list_to_256(coords, width, height) video_flow, points = process_traj(coords_list, num_frames, (height,width), device=device) video_flow = rearrange(video_flow, "T H W C -> T C H W") video_flow = flow_to_image(video_flow).unsqueeze_(0).to(device) # [1 T C H W] video_flow = (rearrange(video_flow / 255.0 * 2 - 1, "B T C H W -> B C T H W").contiguous().to(vae.dtype)) video_flow_image = rearrange(video_flow, "B C T H W -> (B T) H W C") #print(video_flow_image.shape) mm.soft_empty_cache() # VAE encode vae.to(device) video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor log.info(f"video_flow shape after encoding: {video_flow.shape}") #torch.Size([1, 16, 4, 80, 80]) vae.to(offload_device) tora_model["traj_extractor"].to(device) #print("video_flow shape before traj_extractor: ", video_flow.shape) #torch.Size([1, 16, 4, 80, 80]) video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32)) tora_model["traj_extractor"].to(offload_device) video_flow_features = torch.stack(video_flow_features) #print("video_flow_features after traj_extractor: ", video_flow_features.shape) #torch.Size([42, 4, 128, 40, 40]) video_flow_features = video_flow_features * strength tora = { "video_flow_features" : video_flow_features, "start_percent" : start_percent, "end_percent" : end_percent, "traj_extractor" : tora_model["traj_extractor"], "fuser_list" : tora_model["fuser_list"], } return (tora, video_flow_image.cpu().float()) class ToraEncodeOpticalFlow: @classmethod def INPUT_TYPES(s): return {"required": { "vae": ("VAE",), "tora_model": ("TORAMODEL",), "optical_flow": ("IMAGE", ), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, } RETURN_TYPES = ("TORAFEATURES",) RETURN_NAMES = ("tora_trajectory",) FUNCTION = "encode" CATEGORY = "CogVideoWrapper" def encode(self, vae, optical_flow, strength, tora_model, start_percent, end_percent): check_diffusers_version() B, H, W, C = optical_flow.shape device = mm.get_torch_device() offload_device = mm.unet_offload_device() generator = torch.Generator(device=device).manual_seed(0) try: vae.enable_slicing() except: pass try: vae._clear_fake_context_parallel_cache() except: pass video_flow = optical_flow * 2 - 1 video_flow = rearrange(video_flow, "(B T) H W C -> B C T H W", T=B, B=1) print(video_flow.shape) mm.soft_empty_cache() # VAE encode vae.to(device) video_flow = video_flow.to(vae.dtype).to(vae.device) video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor vae.to(offload_device) video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32)) video_flow_features = torch.stack(video_flow_features) video_flow_features = video_flow_features * strength log.info(f"video_flow shape: {video_flow.shape}") tora = { "video_flow_features" : video_flow_features, "start_percent" : start_percent, "end_percent" : end_percent, "traj_extractor" : tora_model["traj_extractor"], "fuser_list" : tora_model["fuser_list"], } return (tora, ) #region FasterCache class CogVideoXFasterCache: @classmethod def INPUT_TYPES(s): return { "required": { "start_step": ("INT", {"default": 15, "min": 0, "max": 1024, "step": 1}), "hf_step": ("INT", {"default": 30, "min": 0, "max": 1024, "step": 1}), "lf_step": ("INT", {"default": 40, "min": 0, "max": 1024, "step": 1}), "cache_device": (["main_device", "offload_device", "cuda:1"], {"default": "main_device", "tooltip": "The device to use for the cache, main_device is on GPU and uses a lot of VRAM"}), "num_blocks_to_cache": ("INT", {"default": 42, "min": 0, "max": 1024, "step": 1, "tooltip": "Number of transformer blocks to cache, 5b model has 42 blocks, tradeoff between speed and memory"}), }, } RETURN_TYPES = ("FASTERCACHEARGS",) RETURN_NAMES = ("fastercache", ) FUNCTION = "args" CATEGORY = "CogVideoWrapper" def args(self, start_step, hf_step, lf_step, cache_device, num_blocks_to_cache): device = mm.get_torch_device() offload_device = mm.unet_offload_device() if cache_device == "cuda:1": device = torch.device("cuda:1") fastercache = { "start_step" : start_step, "hf_step" : hf_step, "lf_step" : lf_step, "cache_device" : device if cache_device != "offload_device" else offload_device, "num_blocks_to_cache" : num_blocks_to_cache, } return (fastercache,) #region Sampler class CogVideoSampler: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("COGVIDEOMODEL",), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "num_frames": ("INT", {"default": 49, "min": 1, "max": 1024, "step": 1}), "steps": ("INT", {"default": 50, "min": 1}), "cfg": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "scheduler": (available_schedulers, { "default": 'CogVideoXDDIM' }), }, "optional": { "samples": ("LATENT", {"tooltip": "init Latents to use for video2video process"} ), "image_cond_latents": ("LATENT",{"tooltip": "Latent to use for image2video conditioning"} ), "denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "context_options": ("COGCONTEXT", ), "controlnet": ("COGVIDECONTROLNET",), "tora_trajectory": ("TORAFEATURES", ), "fastercache": ("FASTERCACHEARGS", ), } } RETURN_TYPES = ("LATENT",) RETURN_NAMES = ("samples",) FUNCTION = "process" CATEGORY = "CogVideoWrapper" def process(self, model, positive, negative, steps, cfg, seed, scheduler, num_frames, samples=None, denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None, tora_trajectory=None, fastercache=None): mm.unload_all_models() mm.soft_empty_cache() model_name = model.get("model_name", "") supports_image_conds = True if ( "I2V" in model_name or "interpolation" in model_name.lower() or "fun" in model_name.lower() or "img2vid" in model_name.lower() ) else False if "fun" in model_name.lower() and not ("pose" in model_name.lower() or "control" in model_name.lower()) and image_cond_latents is not None: assert image_cond_latents["mask"] is not None, "For fun inpaint models use CogVideoImageEncodeFunInP" fun_mask = image_cond_latents["mask"] else: fun_mask = None if image_cond_latents is not None: assert supports_image_conds, "Image condition latents only supported for I2V and Interpolation models" image_conds = image_cond_latents["samples"] image_cond_start_percent = image_cond_latents.get("start_percent", 0.0) image_cond_end_percent = image_cond_latents.get("end_percent", 1.0) if "1.5" in model_name or "1_5" in model_name: image_conds = image_conds / 0.7 # needed for 1.5 models else: if not "fun" in model_name.lower(): assert not supports_image_conds, "Image condition latents required for I2V models" image_conds = None if samples is not None: if len(samples["samples"].shape) == 5: B, T, C, H, W = samples["samples"].shape latents = samples["samples"] if len(samples["samples"].shape) == 4: B, C, H, W = samples["samples"].shape latents = None if image_cond_latents is not None: B, T, C, H, W = image_cond_latents["samples"].shape height = H * 8 width = W * 8 device = mm.get_torch_device() offload_device = mm.unet_offload_device() pipe = model["pipe"] dtype = model["dtype"] scheduler_config = model["scheduler_config"] if not model["cpu_offloading"] and model["manual_offloading"]: pipe.transformer.to(device) generator = torch.Generator(device=torch.device("cpu")).manual_seed(seed) if scheduler in scheduler_mapping: noise_scheduler = scheduler_mapping[scheduler].from_config(scheduler_config) pipe.scheduler = noise_scheduler else: raise ValueError(f"Unknown scheduler: {scheduler}") if tora_trajectory is not None: pipe.transformer.fuser_list = tora_trajectory["fuser_list"] if context_options is not None: context_frames = context_options["context_frames"] // 4 context_stride = context_options["context_stride"] // 4 context_overlap = context_options["context_overlap"] // 4 else: context_frames, context_stride, context_overlap = None, None, None if negative.shape[1] < positive.shape[1]: target_length = positive.shape[1] padding = torch.zeros((negative.shape[0], target_length - negative.shape[1], negative.shape[2]), device=negative.device) negative = torch.cat((negative, padding), dim=1) if fastercache is not None: pipe.transformer.use_fastercache = True pipe.transformer.fastercache_counter = 0 pipe.transformer.fastercache_start_step = fastercache["start_step"] pipe.transformer.fastercache_lf_step = fastercache["lf_step"] pipe.transformer.fastercache_hf_step = fastercache["hf_step"] pipe.transformer.fastercache_device = fastercache["cache_device"] pipe.transformer.fastercache_num_blocks_to_cache = fastercache["num_blocks_to_cache"] log.info(f"FasterCache enabled for {pipe.transformer.fastercache_num_blocks_to_cache} blocks out of {len(pipe.transformer.transformer_blocks)}") else: pipe.transformer.use_fastercache = False pipe.transformer.fastercache_counter = 0 if not isinstance(cfg, list): cfg = [cfg for _ in range(steps)] else: assert len(cfg) == steps, "Length of cfg list must match number of steps" try: torch.cuda.reset_peak_memory_stats(device) except: pass autocast_context = torch.autocast( mm.get_autocast_device(device), dtype=dtype ) if any(q in model["quantization"] for q in ("e4m3fn", "GGUF")) else nullcontext() with autocast_context: latents = model["pipe"]( num_inference_steps=steps, height = height, width = width, num_frames = num_frames, guidance_scale=cfg, latents=latents if samples is not None else None, fun_mask = fun_mask, image_cond_latents=image_conds, denoise_strength=denoise_strength, prompt_embeds=positive.to(dtype).to(device), negative_prompt_embeds=negative.to(dtype).to(device), generator=generator, device=device, context_schedule=context_options["context_schedule"] if context_options is not None else None, context_frames=context_frames, context_stride= context_stride, context_overlap= context_overlap, freenoise=context_options["freenoise"] if context_options is not None else None, controlnet=controlnet, tora=tora_trajectory if tora_trajectory is not None else None, image_cond_start_percent=image_cond_start_percent if image_cond_latents is not None else 0.0, image_cond_end_percent=image_cond_end_percent if image_cond_latents is not None else 1.0, ) if not model["cpu_offloading"] and model["manual_offloading"]: pipe.transformer.to(offload_device) if fastercache is not None: for block in pipe.transformer.transformer_blocks: if (hasattr, block, "cached_hidden_states") and block.cached_hidden_states is not None: block.cached_hidden_states = None block.cached_encoder_hidden_states = None print_memory(device) mm.soft_empty_cache() try: torch.cuda.reset_peak_memory_stats(device) except: pass additional_frames = getattr(pipe, "additional_frames", 0) return ({ "samples": latents, "additional_frames": additional_frames, },) class CogVideoControlNet: @classmethod def INPUT_TYPES(s): return {"required": { "controlnet": ("COGVIDECONTROLNETMODEL",), "images": ("IMAGE", ), "control_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "control_start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), "control_end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, } RETURN_TYPES = ("COGVIDECONTROLNET",) RETURN_NAMES = ("cogvideo_controlnet",) FUNCTION = "encode" CATEGORY = "CogVideoWrapper" def encode(self, controlnet, images, control_strength, control_start_percent, control_end_percent): control_frames = images.permute(0, 3, 1, 2).unsqueeze(0) * 2 - 1 controlnet = { "control_model": controlnet, "control_frames": control_frames, "control_weights": control_strength, "control_start": control_start_percent, "control_end": control_end_percent, } return (controlnet,) #region VideoDecode class CogVideoDecode: @classmethod def INPUT_TYPES(s): return {"required": { "vae": ("VAE",), "samples": ("LATENT",), "enable_vae_tiling": ("BOOLEAN", {"default": True, "tooltip": "Drastically reduces memory use but may introduce seams"}), "tile_sample_min_height": ("INT", {"default": 240, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile height, default is half the height"}), "tile_sample_min_width": ("INT", {"default": 360, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile width, default is half the width"}), "tile_overlap_factor_height": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}), "tile_overlap_factor_width": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}), "auto_tile_size": ("BOOLEAN", {"default": True, "tooltip": "Auto size based on height and width, default is half the size"}), }, } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("images",) FUNCTION = "decode" CATEGORY = "CogVideoWrapper" def decode(self, vae, samples, enable_vae_tiling, tile_sample_min_height, tile_sample_min_width, tile_overlap_factor_height, tile_overlap_factor_width, auto_tile_size=True, pipeline=None): device = mm.get_torch_device() offload_device = mm.unet_offload_device() latents = samples["samples"] additional_frames = samples.get("additional_frames", 0) try: vae.enable_slicing() except: pass vae.to(device) if enable_vae_tiling: if auto_tile_size: vae.enable_tiling() else: vae.enable_tiling( tile_sample_min_height=tile_sample_min_height, tile_sample_min_width=tile_sample_min_width, tile_overlap_factor_height=tile_overlap_factor_height, tile_overlap_factor_width=tile_overlap_factor_width, ) else: vae.disable_tiling() latents = latents.to(vae.dtype).to(device) latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / vae.config.scaling_factor * latents try: vae._clear_fake_context_parallel_cache() except: pass try: frames = vae.decode(latents[:, :, additional_frames:]).sample except: mm.soft_empty_cache() log.warning("Failed to decode, retrying with tiling") vae.enable_tiling() frames = vae.decode(latents[:, :, additional_frames:]).sample vae.disable_tiling() vae.to(offload_device) mm.soft_empty_cache() video_processor = VideoProcessor(vae_scale_factor=8) video_processor.config.do_resize = False video = video_processor.postprocess_video(video=frames, output_type="pt") video = video[0].permute(0, 2, 3, 1).cpu().float() return (video,) class CogVideoXFunResizeToClosestBucket: upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] @classmethod def INPUT_TYPES(s): return {"required": { "images": ("IMAGE", ), "base_resolution": ("INT", {"min": 64, "max": 1280, "step": 64, "default": 512, "tooltip": "Base resolution, closest training data bucket resolution is chosen based on the selection."}), "upscale_method": (s.upscale_methods, {"default": "lanczos", "tooltip": "Upscale method to use"}), "crop": (["disabled","center"],), }, } RETURN_TYPES = ("IMAGE", "INT", "INT") RETURN_NAMES = ("images", "width", "height") FUNCTION = "resize" CATEGORY = "CogVideoWrapper" def resize(self, images, base_resolution, upscale_method, crop): from comfy.utils import common_upscale from .cogvideox_fun.utils import ASPECT_RATIO_512, get_closest_ratio B, H, W, C = images.shape # Find most suitable height and width aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} closest_size, closest_ratio = get_closest_ratio(H, W, ratios=aspect_ratio_sample_size) height, width = [int(x / 16) * 16 for x in closest_size] log.info(f"Closest bucket size: {width}x{height}") resized_images = images.clone().movedim(-1,1) resized_images = common_upscale(resized_images, width, height, upscale_method, crop) resized_images = resized_images.movedim(1,-1) return (resized_images, width, height) class CogVideoLatentPreview: @classmethod def INPUT_TYPES(s): return { "required": { "samples": ("LATENT",), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "min_val": ("FLOAT", {"default": -0.15, "min": -1.0, "max": 0.0, "step": 0.001}), "max_val": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}), "r_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}), "g_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}), "b_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}), }, } RETURN_TYPES = ("IMAGE", "STRING", ) RETURN_NAMES = ("images", "latent_rgb_factors",) FUNCTION = "sample" CATEGORY = "PyramidFlowWrapper" def sample(self, samples, seed, min_val, max_val, r_bias, g_bias, b_bias): mm.soft_empty_cache() latents = samples["samples"].clone() print("in sample", latents.shape) latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] #[[0.0658900170023352, 0.04687556512203313, -0.056971557475649186], [-0.01265770449940036, -0.02814809569100843, -0.0768912512529372], [0.061456544746314665, 0.0005511617552452358, -0.0652574975291287], [-0.09020669168815276, -0.004755440180558637, -0.023763970904494294], [0.031766964513999865, -0.030959599938418375, 0.08654669098083616], [-0.005981764690055846, -0.08809119252349802, -0.06439852368217663], [-0.0212114426433989, 0.08894281999597677, 0.05155629477559985], [-0.013947446911030725, -0.08987475069900677, -0.08923124751217484], [-0.08235967967978511, 0.07268025379974379, 0.08830486164536037], [-0.08052049179735378, -0.050116143175332195, 0.02023752569687405], [-0.07607527759162447, 0.06827156419895981, 0.08678111754261035], [-0.04689089232553825, 0.017294986041038893, -0.10280492336438908], [-0.06105783150270304, 0.07311850680875913, 0.019995735372550075], [-0.09232589996527711, -0.012869815059053047, -0.04355587834255975], [-0.06679931010802251, 0.018399815879067458, 0.06802404982033876], [-0.013062632927118165, -0.04292991477896661, 0.07476243356192845]] latent_rgb_factors =[[0.11945946736445662, 0.09919175788574555, -0.004832707433877734], [-0.0011977028264356232, 0.05496505130267682, 0.021321622433638193], [-0.014088548986590666, -0.008701477861945644, -0.020991313281459367], [0.03063921972519621, 0.12186477097625073, 0.0139593690235148], [0.0927403067854673, 0.030293187650929136, 0.05083134241694003], [0.0379112441305742, 0.04935199882777209, 0.058562766246777774], [0.017749911959153715, 0.008839453404921545, 0.036005638019226294], [0.10610119248526109, 0.02339855688237826, 0.057154257614084596], [0.1273639464837117, -0.010959856130713416, 0.043268631260428896], [-0.01873510946881321, 0.08220930648486932, 0.10613256772247093], [0.008429116376722327, 0.07623856561000408, 0.09295712117576727], [0.12938137079617007, 0.12360403483892413, 0.04478930933220116], [0.04565908794779364, 0.041064156741596365, -0.017695041535528512], [0.00019003240570281826, -0.013965147883381978, 0.05329669529635849], [0.08082391586738358, 0.11548306825496074, -0.021464170006615893], [-0.01517932393230994, -0.0057985555313003236, 0.07216646476618871]] import random random.seed(seed) latent_rgb_factors = [[random.uniform(min_val, max_val) for _ in range(3)] for _ in range(16)] out_factors = latent_rgb_factors print(latent_rgb_factors) latent_rgb_factors_bias = [0.085, 0.137, 0.158] #latent_rgb_factors_bias = [r_bias, g_bias, b_bias] latent_rgb_factors = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1) latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype) print("latent_rgb_factors", latent_rgb_factors.shape) latent_images = [] for t in range(latents.shape[2]): latent = latents[:, :, t, :, :] latent = latent[0].permute(1, 2, 0) latent_image = torch.nn.functional.linear( latent, latent_rgb_factors, bias=latent_rgb_factors_bias ) latent_images.append(latent_image) latent_images = torch.stack(latent_images, dim=0) print("latent_images", latent_images.shape) latent_images_min = latent_images.min() latent_images_max = latent_images.max() latent_images = (latent_images - latent_images_min) / (latent_images_max - latent_images_min) return (latent_images.float().cpu(), out_factors) NODE_CLASS_MAPPINGS = { "CogVideoSampler": CogVideoSampler, "CogVideoDecode": CogVideoDecode, "CogVideoTextEncode": CogVideoTextEncode, "CogVideoImageEncode": CogVideoImageEncode, "CogVideoTextEncodeCombine": CogVideoTextEncodeCombine, "CogVideoTransformerEdit": CogVideoTransformerEdit, "CogVideoContextOptions": CogVideoContextOptions, "CogVideoControlNet": CogVideoControlNet, "ToraEncodeTrajectory": ToraEncodeTrajectory, "ToraEncodeOpticalFlow": ToraEncodeOpticalFlow, "CogVideoXFasterCache": CogVideoXFasterCache, "CogVideoXFunResizeToClosestBucket": CogVideoXFunResizeToClosestBucket, "CogVideoLatentPreview": CogVideoLatentPreview, "CogVideoXTorchCompileSettings": CogVideoXTorchCompileSettings, "CogVideoImageEncodeFunInP": CogVideoImageEncodeFunInP, } NODE_DISPLAY_NAME_MAPPINGS = { "CogVideoSampler": "CogVideo Sampler", "CogVideoDecode": "CogVideo Decode", "CogVideoTextEncode": "CogVideo TextEncode", "CogVideoImageEncode": "CogVideo ImageEncode", "CogVideoTextEncodeCombine": "CogVideo TextEncode Combine", "CogVideoTransformerEdit": "CogVideo TransformerEdit", "CogVideoContextOptions": "CogVideo Context Options", "ToraEncodeTrajectory": "Tora Encode Trajectory", "ToraEncodeOpticalFlow": "Tora Encode OpticalFlow", "CogVideoXFasterCache": "CogVideoX FasterCache", "CogVideoXFunResizeToClosestBucket": "CogVideoXFun ResizeToClosestBucket", "CogVideoLatentPreview": "CogVideo LatentPreview", "CogVideoXTorchCompileSettings": "CogVideo TorchCompileSettings", "CogVideoImageEncodeFunInP": "CogVideo ImageEncode FunInP", }