import numpy as np import cv2 import torch # Note that the coordinates passed to the model must not exceed 256. # xy range 256 def pdf2(sigma_matrix, grid): """Calculate PDF of the bivariate Gaussian distribution. Args: sigma_matrix (ndarray): with the shape (2, 2) grid (ndarray): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Returns: kernel (ndarrray): un-normalized kernel. """ inverse_sigma = np.linalg.inv(sigma_matrix) kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) return kernel def mesh_grid(kernel_size): """Generate the mesh grid, centering at zero. Args: kernel_size (int): Returns: xy (ndarray): with the shape (kernel_size, kernel_size, 2) xx (ndarray): with the shape (kernel_size, kernel_size) yy (ndarray): with the shape (kernel_size, kernel_size) """ ax = np.arange(-kernel_size // 2 + 1.0, kernel_size // 2 + 1.0) xx, yy = np.meshgrid(ax, ax) xy = np.hstack( ( xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, 1), ) ).reshape(kernel_size, kernel_size, 2) return xy, xx, yy def sigma_matrix2(sig_x, sig_y, theta): """Calculate the rotated sigma matrix (two dimensional matrix). Args: sig_x (float): sig_y (float): theta (float): Radian measurement. Returns: ndarray: Rotated sigma matrix. """ d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): """Generate a bivariate isotropic or anisotropic Gaussian kernel. In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. Args: kernel_size (int): sig_x (float): sig_y (float): theta (float): Radian measurement. grid (ndarray, optional): generated by :func:`mesh_grid`, with the shape (K, K, 2), K is the kernel size. Default: None isotropic (bool): Returns: kernel (ndarray): normalized kernel. """ if grid is None: grid, _, _ = mesh_grid(kernel_size) if isotropic: sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) else: sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) kernel = pdf2(sigma_matrix, grid) kernel = kernel / np.sum(kernel) return kernel size = 99 sigma = 10 blur_kernel = bivariate_Gaussian(size, sigma, sigma, 0, grid=None, isotropic=True) blur_kernel = blur_kernel / blur_kernel[size // 2, size // 2] canvas_width, canvas_height = 256, 256 def get_flow(points, optical_flow, video_len): for i in range(video_len - 1): p = points[i] p1 = points[i + 1] optical_flow[i + 1, p[1], p[0], 0] = p1[0] - p[0] optical_flow[i + 1, p[1], p[0], 1] = p1[1] - p[1] return optical_flow def process_points(points, frames=49): defualt_points = [[128, 128]] * frames if len(points) < 2: return defualt_points elif len(points) >= frames: skip = len(points) // frames return points[::skip][: frames - 1] + points[-1:] else: insert_num = frames - len(points) insert_num_dict = {} interval = len(points) - 1 n = insert_num // interval m = insert_num % interval for i in range(interval): insert_num_dict[i] = n for i in range(m): insert_num_dict[i] += 1 res = [] for i in range(interval): insert_points = [] x0, y0 = points[i] x1, y1 = points[i + 1] delta_x = x1 - x0 delta_y = y1 - y0 for j in range(insert_num_dict[i]): x = x0 + (j + 1) / (insert_num_dict[i] + 1) * delta_x y = y0 + (j + 1) / (insert_num_dict[i] + 1) * delta_y insert_points.append([int(x), int(y)]) res += points[i : i + 1] + insert_points res += points[-1:] return res def read_points_from_list(traj_list, video_len=16, reverse=False): points = [] for point in traj_list: if isinstance(point, str): x, y = point.strip().split(",") else: x, y = point[0], point[1] points.append((int(x), int(y))) if reverse: points = points[::-1] if len(points) > video_len: skip = len(points) // video_len points = points[::skip] points = points[:video_len] return points def read_points_from_file(file, video_len=16, reverse=False): with open(file, "r") as f: lines = f.readlines() points = [] for line in lines: x, y = line.strip().split(",") points.append((int(x), int(y))) if reverse: points = points[::-1] if len(points) > video_len: skip = len(points) // video_len points = points[::skip] points = points[:video_len] return points def process_traj(trajs_list, num_frames, video_size, device="cpu"): if trajs_list and trajs_list[0] and (not isinstance(trajs_list[0][0], (list, tuple))): tmp = trajs_list trajs_list = [tmp] optical_flow = np.zeros((num_frames, video_size[0], video_size[1], 2), dtype=np.float32) processed_points = [] for traj_list in trajs_list: points = read_points_from_list(traj_list, video_len=num_frames) xy_range = 256 h, w = video_size points = process_points(points, num_frames) points = [[int(w * x / xy_range), int(h * y / xy_range)] for x, y in points] optical_flow = get_flow(points, optical_flow, video_len=num_frames) processed_points.append(points) print(f"received {len(trajs_list)} trajectorie(s)") for i in range(1, num_frames): optical_flow[i] = cv2.filter2D(optical_flow[i], -1, blur_kernel) optical_flow = torch.tensor(optical_flow).to(device) return optical_flow, processed_points def add_provided_traj(traj_name): global traj_list traj_list = PROVIDED_TRAJS[traj_name] traj_str = [f"{traj}" for traj in traj_list] return ", ".join(traj_str) def scale_traj_list_to_256(traj_list, canvas_width, canvas_height): scale_x = 256 / canvas_width scale_y = 256 / canvas_height scaled_traj_list = [[int(x * scale_x), int(y * scale_y)] for x, y in traj_list] return scaled_traj_list