import importlib.metadata import torch import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') log = logging.getLogger(__name__) def check_diffusers_version(): try: version = importlib.metadata.version('diffusers') required_version = '0.31.0' if version < required_version: raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.") except importlib.metadata.PackageNotFoundError: raise AssertionError("diffusers is not installed.") def remove_specific_blocks(model, block_indices_to_remove): import torch.nn as nn transformer_blocks = model.transformer_blocks new_blocks = [block for i, block in enumerate(transformer_blocks) if i not in block_indices_to_remove] model.transformer_blocks = nn.ModuleList(new_blocks) return model def print_memory(device): memory = torch.cuda.memory_allocated(device) / 1024**3 max_memory = torch.cuda.max_memory_allocated(device) / 1024**3 max_reserved = torch.cuda.max_memory_reserved(device) / 1024**3 log.info(f"Allocated memory: {memory=:.3f} GB") log.info(f"Max allocated memory: {max_memory=:.3f} GB") log.info(f"Max reserved memory: {max_reserved=:.3f} GB")