#credit to comfyanonymous for this module #from https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4 import comfy.ops import torch import folder_paths from ..libs.utils import install_package try: from bitsandbytes.nn.modules import Params4bit, QuantState except ImportError: Params4bit = torch.nn.Parameter raise ImportError("Please install bitsandbytes>=0.43.3") def functional_linear_4bits(x, weight, bias): try: install_package("bitsandbytes", "0.43.3", True, "0.43.3") import bitsandbytes as bnb except ImportError: raise ImportError("Please install bitsandbytes>=0.43.3") out = bnb.matmul_4bit(x, weight.t(), bias=bias, quant_state=weight.quant_state) out = out.to(x) return out def copy_quant_state(state, device: torch.device = None): if state is None: return None device = device or state.absmax.device state2 = ( QuantState( absmax=state.state2.absmax.to(device), shape=state.state2.shape, code=state.state2.code.to(device), blocksize=state.state2.blocksize, quant_type=state.state2.quant_type, dtype=state.state2.dtype, ) if state.nested else None ) return QuantState( absmax=state.absmax.to(device), shape=state.shape, code=state.code.to(device), blocksize=state.blocksize, quant_type=state.quant_type, dtype=state.dtype, offset=state.offset.to(device) if state.nested else None, state2=state2, ) class ForgeParams4bit(Params4bit): def to(self, *args, **kwargs): device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) if device is not None and device.type == "cuda" and not self.bnb_quantized: return self._quantize(device) else: n = ForgeParams4bit( torch.nn.Parameter.to(self, device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, quant_state=copy_quant_state(self.quant_state, device), blocksize=self.blocksize, compress_statistics=self.compress_statistics, quant_type=self.quant_type, quant_storage=self.quant_storage, bnb_quantized=self.bnb_quantized, module=self.module ) self.module.quant_state = n.quant_state self.data = n.data self.quant_state = n.quant_state return n class ForgeLoader4Bit(torch.nn.Module): def __init__(self, *, device, dtype, quant_type, **kwargs): super().__init__() self.dummy = torch.nn.Parameter(torch.empty(1, device=device, dtype=dtype)) self.weight = None self.quant_state = None self.bias = None self.quant_type = quant_type def _save_to_state_dict(self, destination, prefix, keep_vars): super()._save_to_state_dict(destination, prefix, keep_vars) quant_state = getattr(self.weight, "quant_state", None) if quant_state is not None: for k, v in quant_state.as_dict(packed=True).items(): destination[prefix + "weight." + k] = v if keep_vars else v.detach() return def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): quant_state_keys = {k[len(prefix + "weight."):] for k in state_dict.keys() if k.startswith(prefix + "weight.")} if any('bitsandbytes' in k for k in quant_state_keys): quant_state_dict = {k: state_dict[prefix + "weight." + k] for k in quant_state_keys} self.weight = ForgeParams4bit().from_prequantized( data=state_dict[prefix + 'weight'], quantized_stats=quant_state_dict, requires_grad=False, device=self.dummy.device, module=self ) self.quant_state = self.weight.quant_state if prefix + 'bias' in state_dict: self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy)) del self.dummy elif hasattr(self, 'dummy'): if prefix + 'weight' in state_dict: self.weight = ForgeParams4bit( state_dict[prefix + 'weight'].to(self.dummy), requires_grad=False, compress_statistics=True, quant_type=self.quant_type, quant_storage=torch.uint8, module=self, ) self.quant_state = self.weight.quant_state if prefix + 'bias' in state_dict: self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy)) del self.dummy else: super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) current_device = None current_dtype = None current_manual_cast_enabled = False current_bnb_dtype = None class OPS(comfy.ops.manual_cast): class Linear(ForgeLoader4Bit): def __init__(self, *args, device=None, dtype=None, **kwargs): super().__init__(device=device, dtype=dtype, quant_type=current_bnb_dtype) self.parameters_manual_cast = current_manual_cast_enabled def forward(self, x): self.weight.quant_state = self.quant_state if self.bias is not None and self.bias.dtype != x.dtype: # Maybe this can also be set to all non-bnb ops since the cost is very low. # And it only invokes one time, and most linear does not have bias self.bias.data = self.bias.data.to(x.dtype) if not self.parameters_manual_cast: return functional_linear_4bits(x, self.weight, self.bias) elif not self.weight.bnb_quantized: assert x.device.type == 'cuda', 'BNB Must Use CUDA as Computation Device!' layer_original_device = self.weight.device self.weight = self.weight._quantize(x.device) bias = self.bias.to(x.device) if self.bias is not None else None out = functional_linear_4bits(x, self.weight, bias) self.weight = self.weight.to(layer_original_device) return out else: weight, bias, signal = weights_manual_cast(self, x, skip_weight_dtype=True, skip_bias_dtype=True) with main_stream_worker(weight, bias, signal): return functional_linear_4bits(x, weight, bias)