import torch.nn as nn import torch import cv2 import numpy as np import comfy.model_management from comfy.model_patcher import ModelPatcher from tqdm import tqdm from typing import Optional, Tuple from ..libs.utils import install_package from packaging import version try: install_package("diffusers", "0.27.2", True, "0.25.0") from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers import __version__ if __version__: if version.parse(__version__) < version.parse("0.26.0"): from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block else: from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block import functools def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module class LatentTransparencyOffsetEncoder(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.blocks = torch.nn.Sequential( torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2), nn.SiLU(), torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2), nn.SiLU(), torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1), nn.SiLU(), torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2), nn.SiLU(), torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1), nn.SiLU(), zero_module(torch.nn.Conv2d(256, 4, kernel_size=3, padding=1, stride=1)), ) def __call__(self, x): return self.blocks(x) # 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3 class UNet1024(ModelMixin, ConfigMixin): @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ( "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ), up_block_types: Tuple[str] = ( "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512), layers_per_block: int = 2, mid_block_scale_factor: float = 1, downsample_padding: int = 1, downsample_type: str = "conv", upsample_type: str = "conv", dropout: float = 0.0, act_fn: str = "silu", attention_head_dim: Optional[int] = 8, norm_num_groups: int = 4, norm_eps: float = 1e-5, ): super().__init__() # input self.conv_in = nn.Conv2d( in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1) ) self.latent_conv_in = zero_module( nn.Conv2d(4, block_out_channels[2], kernel_size=1) ) self.down_blocks = nn.ModuleList([]) self.mid_block = None self.up_blocks = nn.ModuleList([]) # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block, in_channels=input_channel, out_channels=output_channel, temb_channels=None, add_downsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=( attention_head_dim if attention_head_dim is not None else output_channel ), downsample_padding=downsample_padding, resnet_time_scale_shift="default", downsample_type=downsample_type, dropout=dropout, ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlock2D( in_channels=block_out_channels[-1], temb_channels=None, dropout=dropout, resnet_eps=norm_eps, resnet_act_fn=act_fn, output_scale_factor=mid_block_scale_factor, resnet_time_scale_shift="default", attention_head_dim=( attention_head_dim if attention_head_dim is not None else block_out_channels[-1] ), resnet_groups=norm_num_groups, attn_groups=None, add_attention=True, ) # up reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[ min(i + 1, len(block_out_channels) - 1) ] is_final_block = i == len(block_out_channels) - 1 up_block = get_up_block( up_block_type, num_layers=layers_per_block + 1, in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=None, add_upsample=not is_final_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, attention_head_dim=( attention_head_dim if attention_head_dim is not None else output_channel ), resnet_time_scale_shift="default", upsample_type=upsample_type, dropout=dropout, ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm( num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps ) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d( block_out_channels[0], out_channels, kernel_size=3, padding=1 ) def forward(self, x, latent): sample_latent = self.latent_conv_in(latent) sample = self.conv_in(x) emb = None down_block_res_samples = (sample,) for i, downsample_block in enumerate(self.down_blocks): if i == 3: sample = sample + sample_latent sample, res_samples = downsample_block(hidden_states=sample, temb=emb) down_block_res_samples += res_samples sample = self.mid_block(sample, emb) for upsample_block in self.up_blocks: res_samples = down_block_res_samples[-len(upsample_block.resnets):] down_block_res_samples = down_block_res_samples[ : -len(upsample_block.resnets) ] sample = upsample_block(sample, res_samples, emb) sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) return sample def checkerboard(shape): return np.indices(shape).sum(axis=0) % 2 def fill_checkerboard_bg(y: torch.Tensor) -> torch.Tensor: alpha = y[..., :1] fg = y[..., 1:] B, H, W, C = fg.shape cb = checkerboard(shape=(H // 64, W // 64)) cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST) cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None] cb = torch.from_numpy(cb).to(fg) vis = fg * alpha + cb * (1 - alpha) return vis class TransparentVAEDecoder: def __init__(self, sd, device, dtype): self.load_device = device self.dtype = dtype model = UNet1024(in_channels=3, out_channels=4) model.load_state_dict(sd, strict=True) model.to(self.load_device, dtype=self.dtype) model.eval() self.model = model @torch.no_grad() def estimate_single_pass(self, pixel, latent): y = self.model(pixel, latent) return y @torch.no_grad() def estimate_augmented(self, pixel, latent): args = [ [False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3], ] result = [] for flip, rok in tqdm(args): feed_pixel = pixel.clone() feed_latent = latent.clone() if flip: feed_pixel = torch.flip(feed_pixel, dims=(3,)) feed_latent = torch.flip(feed_latent, dims=(3,)) feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3)) feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3)) eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1) eps = torch.rot90(eps, k=-rok, dims=(2, 3)) if flip: eps = torch.flip(eps, dims=(3,)) result += [eps] result = torch.stack(result, dim=0) median = torch.median(result, dim=0).values return median @torch.no_grad() def decode_pixel( self, pixel: torch.TensorType, latent: torch.TensorType ) -> torch.TensorType: # pixel.shape = [B, C=3, H, W] assert pixel.shape[1] == 3 pixel_device = pixel.device pixel_dtype = pixel.dtype pixel = pixel.to(device=self.load_device, dtype=self.dtype) latent = latent.to(device=self.load_device, dtype=self.dtype) # y.shape = [B, C=4, H, W] y = self.estimate_augmented(pixel, latent) y = y.clip(0, 1) assert y.shape[1] == 4 # Restore image to original device of input image. return y.to(pixel_device, dtype=pixel_dtype) def calculate_weight_adjust_channel(func): """Patches ComfyUI's LoRA weight application to accept multi-channel inputs.""" @functools.wraps(func) def calculate_weight( patches, weight: torch.Tensor, key: str, intermediate_type=torch.float32 ) -> torch.Tensor: weight = func(patches, weight, key, intermediate_type) for p in patches: alpha = p[0] v = p[1] # The recursion call should be handled in the main func call. if isinstance(v, list): continue if len(v) == 1: patch_type = "diff" elif len(v) == 2: patch_type = v[0] v = v[1] if patch_type == "diff": w1 = v[0] if all( ( alpha != 0.0, w1.shape != weight.shape, w1.ndim == weight.ndim == 4, ) ): new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)] print( f"Merged with {key} channel changed from {weight.shape} to {new_shape}" ) new_diff = alpha * comfy.model_management.cast_to_device( w1, weight.device, weight.dtype ) new_weight = torch.zeros(size=new_shape).to(weight) new_weight[ : weight.shape[0], : weight.shape[1], : weight.shape[2], : weight.shape[3], ] = weight new_weight[ : new_diff.shape[0], : new_diff.shape[1], : new_diff.shape[2], : new_diff.shape[3], ] += new_diff new_weight = new_weight.contiguous().clone() weight = new_weight return weight return calculate_weight except ImportError: ModelMixin = None ConfigMixin = None TransparentVAEDecoder = None calculate_weight_adjust_channel = None print("\33[33mModule 'diffusers' load failed. If you don't have it installed, do it:\033[0m") print("\33[33mpip install diffusers\033[0m")