from .utils import find_wildcards_seed, find_nearest_steps, is_linked_styles_selector from .log import log_node_warn from .translate import zh_to_en, has_chinese from .wildcards import process_with_loras from .adv_encode import advanced_encode from nodes import ConditioningConcat, ConditioningCombine, ConditioningAverage, ConditioningSetTimestepRange, CLIPTextEncode def prompt_to_cond(type, model, clip, clip_skip, lora_stack, text, prompt_token_normalization, prompt_weight_interpretation, a1111_prompt_style ,my_unique_id, prompt, easyCache, can_load_lora=True, steps=None, model_type=None): styles_selector = is_linked_styles_selector(prompt, my_unique_id, type) title = "Positive encoding" if type == 'positive' else "Negative encoding" # Translate cn to en if model_type not in ['hydit'] and text is not None and has_chinese(text): text = zh_to_en([text])[0] if model_type in ['hydit', 'flux', 'mochi']: log_node_warn(title + "...") embeddings_final, = CLIPTextEncode().encode(clip, text) if text is not None else (None,) return (embeddings_final, "", model, clip) log_node_warn(title + "...") positive_seed = find_wildcards_seed(my_unique_id, text, prompt) model, clip, text, cond_decode, show_prompt, pipe_lora_stack = process_with_loras( text, model, clip, type, positive_seed, can_load_lora, lora_stack, easyCache) wildcard_prompt = cond_decode if show_prompt or styles_selector else "" clipped = clip.clone() # 当clip模型不存在t5xxl时,可执行跳过层 if not hasattr(clip.cond_stage_model, 't5xxl'): if clip_skip != 0: clipped.clip_layer(clip_skip) steps = steps if steps is not None else find_nearest_steps(my_unique_id, prompt) return (advanced_encode(clipped, text, prompt_token_normalization, prompt_weight_interpretation, w_max=1.0, apply_to_pooled='enable', a1111_prompt_style=a1111_prompt_style, steps=steps) if text is not None else None, wildcard_prompt, model, clipped) def set_cond(old_cond, new_cond, mode, average_strength, old_cond_start, old_cond_end, new_cond_start, new_cond_end): if not old_cond: return new_cond else: if mode == "replace": return new_cond elif mode == "concat": return ConditioningConcat().concat(new_cond, old_cond)[0] elif mode == "combine": return ConditioningCombine().combine(old_cond, new_cond)[0] elif mode == 'average': return ConditioningAverage().addWeighted(new_cond, old_cond, average_strength)[0] elif mode == 'timestep': cond_1 = ConditioningSetTimestepRange().set_range(old_cond, old_cond_start, old_cond_end)[0] cond_2 = ConditioningSetTimestepRange().set_range(new_cond, new_cond_start, new_cond_end)[0] return ConditioningCombine().combine(cond_1, cond_2)[0]