import torch import torch.nn as nn from comfy.model_patcher import ModelPatcher from typing import Union T = torch.Tensor def exists(val): return val is not None def default(val, d): if exists(val): return val return d class StyleAlignedArgs: def __init__(self, share_attn: str) -> None: self.adain_keys = "k" in share_attn self.adain_values = "v" in share_attn self.adain_queries = "q" in share_attn share_attention: bool = True adain_queries: bool = True adain_keys: bool = True adain_values: bool = True def expand_first( feat: T, scale=1.0, ) -> T: """ Expand the first element so it has the same shape as the rest of the batch. """ b = feat.shape[0] feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1) if scale == 1: feat_style = feat_style.expand(2, b // 2, *feat.shape[1:]) else: feat_style = feat_style.repeat(1, b // 2, 1, 1, 1) feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1) return feat_style.reshape(*feat.shape) def concat_first(feat: T, dim=2, scale=1.0) -> T: """ concat the the feature and the style feature expanded above """ feat_style = expand_first(feat, scale=scale) return torch.cat((feat, feat_style), dim=dim) def calc_mean_std(feat, eps: float = 1e-5) -> "tuple[T, T]": feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt() feat_mean = feat.mean(dim=-2, keepdims=True) return feat_mean, feat_std def adain(feat: T) -> T: feat_mean, feat_std = calc_mean_std(feat) feat_style_mean = expand_first(feat_mean) feat_style_std = expand_first(feat_std) feat = (feat - feat_mean) / feat_std feat = feat * feat_style_std + feat_style_mean return feat class SharedAttentionProcessor: def __init__(self, args: StyleAlignedArgs, scale: float): self.args = args self.scale = scale def __call__(self, q, k, v, extra_options): if self.args.adain_queries: q = adain(q) if self.args.adain_keys: k = adain(k) if self.args.adain_values: v = adain(v) if self.args.share_attention: k = concat_first(k, -2, scale=self.scale) v = concat_first(v, -2) return q, k, v def get_norm_layers( layer: nn.Module, norm_layers_: "dict[str, list[Union[nn.GroupNorm, nn.LayerNorm]]]", share_layer_norm: bool, share_group_norm: bool, ): if isinstance(layer, nn.LayerNorm) and share_layer_norm: norm_layers_["layer"].append(layer) if isinstance(layer, nn.GroupNorm) and share_group_norm: norm_layers_["group"].append(layer) else: for child_layer in layer.children(): get_norm_layers( child_layer, norm_layers_, share_layer_norm, share_group_norm ) def register_norm_forward( norm_layer: Union[nn.GroupNorm, nn.LayerNorm], ) -> Union[nn.GroupNorm, nn.LayerNorm]: if not hasattr(norm_layer, "orig_forward"): setattr(norm_layer, "orig_forward", norm_layer.forward) orig_forward = norm_layer.orig_forward def forward_(hidden_states: T) -> T: n = hidden_states.shape[-2] hidden_states = concat_first(hidden_states, dim=-2) hidden_states = orig_forward(hidden_states) # type: ignore return hidden_states[..., :n, :] norm_layer.forward = forward_ # type: ignore return norm_layer def register_shared_norm( model: ModelPatcher, share_group_norm: bool = True, share_layer_norm: bool = True, ): norm_layers = {"group": [], "layer": []} get_norm_layers(model.model, norm_layers, share_layer_norm, share_group_norm) print( f"Patching {len(norm_layers['group'])} group norms, {len(norm_layers['layer'])} layer norms." ) return [register_norm_forward(layer) for layer in norm_layers["group"]] + [ register_norm_forward(layer) for layer in norm_layers["layer"] ] SHARE_NORM_OPTIONS = ["both", "group", "layer", "disabled"] SHARE_ATTN_OPTIONS = ["q+k", "q+k+v", "disabled"] def styleAlignBatch(model, share_norm, share_attn, scale=1.0): m = model.clone() share_group_norm = share_norm in ["group", "both"] share_layer_norm = share_norm in ["layer", "both"] register_shared_norm(model, share_group_norm, share_layer_norm) args = StyleAlignedArgs(share_attn) m.set_model_attn1_patch(SharedAttentionProcessor(args, scale)) return m