import math from einops import rearrange import torch import torch.nn.functional as F from comfy.ldm.modules.attention import optimized_attention import comfy.model_patcher import comfy.samplers DEFAULT_PAG_LTX = { 'layers': set([14]) } def gaussian_blur_2d(img, kernel_size, sigma): height = img.shape[-1] kernel_size = min(kernel_size, height - (height % 2 - 1)) ksize_half = (kernel_size - 1) * 0.5 x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) pdf = torch.exp(-0.5 * (x / sigma).pow(2)) x_kernel = pdf / pdf.sum() x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] img = F.pad(img, padding, mode="reflect") img = F.conv2d(img, kernel2d, groups=img.shape[-3]) return img class LTXPerturbedAttentionNode: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL",), "scale": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01}), "rescale": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01}), "cfg": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01}), }, "optional": { "attn_override": ("ATTN_OVERRIDE",), # "attn_type": (["PAG", "SEG"],), } } RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "ltxtricks/attn" def patch(self, model, scale, rescale, cfg, attn_override=DEFAULT_PAG_LTX, attn_type="PAG"): m = model.clone() def pag_fn(q, k,v, heads, attn_precision=None, transformer_options=None): return v def seg_fn(q, k, v, heads, attn_precision=None, transformer_options=None): _, sequence_length, _ = q.shape b, c, f, h, w = transformer_options['original_shape'] q = rearrange(q, 'b (f h w) d -> b (f d) w h', h=h, w=w) kernel_size = math.ceil(6 * scale) + 1 - math.ceil(6 * scale) % 2 q = gaussian_blur_2d(q, kernel_size, scale) q = rearrange(q, 'b (f d) w h -> b (f h w) d', f=f) return optimized_attention(q, k, v, heads, attn_precision=attn_precision) def post_cfg_function(args): model = args["model"] cond_pred = args["cond_denoised"] uncond_pred = args["uncond_denoised"] len_conds = 1 if args.get('uncond', None) is None else 2 cond = args["cond"] sigma = args["sigma"] model_options = args["model_options"].copy() x = args["input"] if scale == 0: if len_conds == 1: return cond_pred return uncond_pred + (cond_pred - uncond_pred) attn_fn = pag_fn if attn_type == 'PAG' else seg_fn for block_idx in attn_override['layers']: model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, attn_fn, f"layer", "self_attn", int(block_idx)) (perturbed,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options) # if len_conds == 1: # output = cond_pred + scale * (cond_pred - pag) # else: # output = cond_pred + (scale-1.0) * (cond_pred - uncond_pred) + scale * (cond_pred - pag) output = uncond_pred + cfg * (cond_pred - uncond_pred) \ + scale * (cond_pred - perturbed) if rescale > 0: factor = cond_pred.std() / output.std() factor = rescale * factor + (1 - rescale) output = output * factor return output m.set_model_sampler_post_cfg_function(post_cfg_function) return (m,)