from collections.abc import Iterable from typing import Union, Callable import torch from torch import Tensor import torch.fft as fft from einops import rearrange import comfy.sample import comfy.samplers import comfy.model_management from comfy.model_patcher import ModelPatcher from comfy.model_base import BaseModel from comfy.sd import VAE from . import freeinit from .conditioning import LoraHookMode from .context import ContextOptions, ContextOptionsGroup from .utils_model import SigmaSchedule from .utils_motion import extend_to_batch_size, get_sorted_list_via_attr, prepare_mask_batch from .logger import logger def prepare_mask_ad(noise_mask, shape, device): """ensures noise mask is of proper dimensions""" noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") #noise_mask = noise_mask.round() noise_mask = torch.cat([noise_mask] * shape[1], dim=1) noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0]) noise_mask = noise_mask.to(device) return noise_mask class NoiseLayerType: DEFAULT = "default" CONSTANT = "constant" EMPTY = "empty" REPEATED_CONTEXT = "repeated_context" FREENOISE = "FreeNoise" LIST = [DEFAULT, CONSTANT, EMPTY, REPEATED_CONTEXT, FREENOISE] class NoiseApplication: ADD = "add" ADD_WEIGHTED = "add_weighted" REPLACE = "replace" LIST = [ADD, ADD_WEIGHTED, REPLACE] class NoiseNormalize: DISABLE = "disable" NORMAL = "normal" LIST = [DISABLE, NORMAL] class SampleSettings: def __init__(self, batch_offset: int=0, noise_type: str=None, seed_gen: str=None, seed_offset: int=0, noise_layers: 'NoiseLayerGroup'=None, iteration_opts=None, seed_override:int=None, negative_cond_flipflop=False, adapt_denoise_steps: bool=False, custom_cfg: 'CustomCFGKeyframeGroup'=None, sigma_schedule: SigmaSchedule=None, image_injection: 'NoisedImageToInjectGroup'=None, noise_calibration: 'NoiseCalibration'=None): self.batch_offset = batch_offset self.noise_type = noise_type if noise_type is not None else NoiseLayerType.DEFAULT self.seed_gen = seed_gen if seed_gen is not None else SeedNoiseGeneration.COMFY self.noise_layers = noise_layers if noise_layers else NoiseLayerGroup() self.iteration_opts = iteration_opts if iteration_opts else IterationOptions() self.seed_offset = seed_offset self.seed_override = seed_override self.negative_cond_flipflop = negative_cond_flipflop self.adapt_denoise_steps = adapt_denoise_steps self.custom_cfg = custom_cfg.clone() if custom_cfg else custom_cfg self.sigma_schedule = sigma_schedule self.image_injection = image_injection.clone() if image_injection else NoisedImageToInjectGroup() self.noise_calibration = noise_calibration def prepare_noise(self, seed: int, latents: Tensor, noise: Tensor, extra_seed_offset=0, extra_args:dict={}, force_create_noise=True): if self.seed_override is not None: seed = self.seed_override # if seed is iterable, attempt to do per-latent noises if isinstance(seed, Iterable): noise = SeedNoiseGeneration.create_noise_individual_seeds(seeds=seed, latents=latents, seed_offset=self.seed_offset+extra_seed_offset, extra_args=extra_args) seed = seed[0]+self.seed_offset else: seed += self.seed_offset # replace initial noise if not batch_offset 0 or Comfy seed_gen or not NoiseType default if self.batch_offset != 0 or self.seed_offset != 0 or self.noise_type != NoiseLayerType.DEFAULT or self.seed_gen != SeedNoiseGeneration.COMFY or force_create_noise: noise = SeedNoiseGeneration.create_noise(seed=seed+extra_seed_offset, latents=latents, existing_seed_gen=self.seed_gen, seed_gen=self.seed_gen, noise_type=self.noise_type, batch_offset=self.batch_offset, extra_args=extra_args) # apply noise layers for noise_layer in self.noise_layers.layers: # first, generate new noise matching seed gen override layer_noise = noise_layer.create_layer_noise(existing_seed_gen=self.seed_gen, seed=seed, latents=latents, extra_seed_offset=extra_seed_offset, extra_args=extra_args) # next, get noise after applying layer noise = noise_layer.apply_layer_noise(new_noise=layer_noise, old_noise=noise) # noise prepared now return noise def pre_run(self, model: ModelPatcher): if self.custom_cfg is not None: self.custom_cfg.reset() if self.image_injection is not None: self.image_injection.reset() def cleanup(self): if self.custom_cfg is not None: self.custom_cfg.reset() if self.image_injection is not None: self.image_injection.reset() def clone(self): return SampleSettings(batch_offset=self.batch_offset, noise_type=self.noise_type, seed_gen=self.seed_gen, seed_offset=self.seed_offset, noise_layers=self.noise_layers.clone(), iteration_opts=self.iteration_opts, seed_override=self.seed_override, negative_cond_flipflop=self.negative_cond_flipflop, adapt_denoise_steps=self.adapt_denoise_steps, custom_cfg=self.custom_cfg, sigma_schedule=self.sigma_schedule, image_injection=self.image_injection, noise_calibration=self.noise_calibration) class NoiseLayer: def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None): self.application: str = NoiseApplication.REPLACE self.noise_type = noise_type self.batch_offset = batch_offset self.seed_gen_override = seed_gen_override self.seed_offset = seed_offset self.seed_override = seed_override self.mask = mask def create_layer_noise(self, existing_seed_gen: str, seed: int, latents: Tensor, extra_seed_offset=0, extra_args:dict={}) -> Tensor: if self.seed_override is not None: seed = self.seed_override # if seed is iterable, attempt to do per-latent noises if isinstance(seed, Iterable): return SeedNoiseGeneration.create_noise_individual_seeds(seeds=seed, latents=latents, seed_offset=self.seed_offset+extra_seed_offset, extra_args=extra_args) seed += self.seed_offset + extra_seed_offset return SeedNoiseGeneration.create_noise(seed=seed, latents=latents, existing_seed_gen=existing_seed_gen, seed_gen=self.seed_gen_override, noise_type=self.noise_type, batch_offset=self.batch_offset, extra_args=extra_args) def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: return old_noise def get_noise_mask(self, noise: Tensor) -> Tensor: if self.mask is None: return 1 noise_mask = self.mask.reshape((-1, 1, self.mask.shape[-2], self.mask.shape[-1])) return prepare_mask_ad(noise_mask, noise.shape, noise.device) class NoiseLayerReplace(NoiseLayer): def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None): super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask) self.application = NoiseApplication.REPLACE def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: noise_mask = self.get_noise_mask(old_noise) return (1-noise_mask)*old_noise + noise_mask*new_noise class NoiseLayerAdd(NoiseLayer): def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None, noise_weight=1.0): super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask) self.noise_weight = noise_weight self.application = NoiseApplication.ADD def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: noise_mask = self.get_noise_mask(old_noise) return (1-noise_mask)*old_noise + noise_mask*(old_noise + new_noise * self.noise_weight) class NoiseLayerAddWeighted(NoiseLayerAdd): def __init__(self, noise_type: str, batch_offset: int, seed_gen_override: str, seed_offset: int, seed_override: int=None, mask: Tensor=None, noise_weight=1.0, balance_multiplier=1.0): super().__init__(noise_type, batch_offset, seed_gen_override, seed_offset, seed_override, mask, noise_weight) self.balance_multiplier = balance_multiplier self.application = NoiseApplication.ADD_WEIGHTED def apply_layer_noise(self, new_noise: Tensor, old_noise: Tensor) -> Tensor: noise_mask = self.get_noise_mask(old_noise) return (1-noise_mask)*old_noise + noise_mask*(old_noise * (1.0-(self.noise_weight*self.balance_multiplier)) + new_noise * self.noise_weight) class NoiseLayerGroup: def __init__(self): self.layers: list[NoiseLayer] = [] def add(self, layer: NoiseLayer) -> None: # add to the end of list self.layers.append(layer) def add_to_start(self, layer: NoiseLayer) -> None: # add to the beginning of list self.layers.insert(0, layer) def __getitem__(self, index) -> NoiseLayer: return self.layers[index] def is_empty(self) -> bool: return len(self.layers) == 0 def clone(self) -> 'NoiseLayerGroup': cloned = NoiseLayerGroup() for layer in self.layers: cloned.add(layer) return cloned class RandDevice: CPU = "cpu" GPU = "gpu" NV = "nv" def get_generator(device=RandDevice.CPU, seed: int=None): generator = None raw_device = None if device == RandDevice.CPU: raw_device = "cpu" generator = torch.Generator(raw_device) elif device == RandDevice.GPU: raw_device = comfy.model_management.get_torch_device() generator = torch.Generator(raw_device) # TODO: should I add the NV code from Auto1111? # It is AGPL licenced, which should be fine since I will not be modifying it. # elif device == RandDevice.NV: # pass else: raise Exception(f"Unknown noise generator device: '{device}'") if seed is not None: generator = generator.manual_seed(seed) return generator, raw_device class SeedNoiseGeneration: COMFY = "comfy" COMFYGPU = "comfy [gpu]" #COMFYNV = "comfy [nv]" AUTO1111 = "auto1111" AUTO1111GPU = "auto1111 [gpu]" #AUTO1111NV = "auto1111 [nv]" USE_EXISTING = "use existing" LIST = [COMFY, COMFYGPU, AUTO1111, AUTO1111GPU] LIST_WITH_OVERRIDE = [USE_EXISTING, COMFY, COMFYGPU, AUTO1111, AUTO1111GPU] _COMFY_GENS = [COMFY, COMFYGPU] _AUTO1111_GENS = [AUTO1111, AUTO1111GPU] _SOURCE_DICT = { COMFY: RandDevice.CPU, COMFYGPU: RandDevice.GPU, AUTO1111: RandDevice.CPU, AUTO1111GPU: RandDevice.GPU, } @classmethod def get_device(cls, seed_gen: str): return cls._SOURCE_DICT[seed_gen] @classmethod def create_noise(cls, seed: int, latents: Tensor, existing_seed_gen: str=COMFY, seed_gen: str=USE_EXISTING, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}): # determine if should use existing type if seed_gen == cls.USE_EXISTING: seed_gen = existing_seed_gen if seed_gen in cls._COMFY_GENS: return cls.create_noise_comfy(seed, latents, noise_type, batch_offset, extra_args, cls.get_device(seed_gen)) elif seed_gen in cls._AUTO1111_GENS: return cls.create_noise_auto1111(seed, latents, noise_type, batch_offset, extra_args, cls.get_device(seed_gen)) raise ValueError(f"Noise seed_gen {seed_gen} is not recognized.") @staticmethod def create_noise_comfy(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}, device=RandDevice.CPU): common_noise = SeedNoiseGeneration._create_common_noise(seed, latents, noise_type, batch_offset, extra_args, device) if common_noise is not None: return common_noise if noise_type == NoiseLayerType.CONSTANT: generator, raw_device = get_generator(device, seed) length = latents.shape[0] single_shape = (1 + batch_offset, latents.shape[1], latents.shape[2], latents.shape[3]) single_noise = torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device=raw_device).to(device="cpu") return torch.cat([single_noise[batch_offset:]] * length, dim=0) # comfy creates noise with a single seed for the entire shape of the latents batched tensor generator, raw_device = get_generator(device, seed) offset_shape = (latents.shape[0] + batch_offset, latents.shape[1], latents.shape[2], latents.shape[3]) final_noise = torch.randn(offset_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device=raw_device).to(device="cpu") final_noise = final_noise[batch_offset:] # convert to derivative noise type, if needed derivative_noise = SeedNoiseGeneration._create_derivative_noise(final_noise, noise_type=noise_type, seed=seed, extra_args=extra_args, device=device) if derivative_noise is not None: return derivative_noise return final_noise @staticmethod def create_noise_auto1111(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}, device=RandDevice.CPU): common_noise = SeedNoiseGeneration._create_common_noise(seed, latents, noise_type, batch_offset, extra_args, device) if common_noise is not None: return common_noise if noise_type == NoiseLayerType.CONSTANT: generator, raw_device = get_generator(device, seed+batch_offset) length = latents.shape[0] single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3]) single_noise = torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device=raw_device).to(device="cpu") return torch.cat([single_noise] * length, dim=0) # auto1111 applies growing seeds for a batch length = latents.shape[0] single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3]) all_noises = [] # i starts at 0 for i in range(length): generator, raw_device = get_generator(device, seed+i+batch_offset) all_noises.append(torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device=raw_device).to(device="cpu")) final_noise = torch.cat(all_noises, dim=0) # convert to derivative noise type, if needed derivative_noise = SeedNoiseGeneration._create_derivative_noise(final_noise, noise_type=noise_type, seed=seed, extra_args=extra_args, device=device) if derivative_noise is not None: return derivative_noise return final_noise @staticmethod def create_noise_individual_seeds(seeds: list[int], latents: Tensor, seed_offset: int=0, extra_args: dict={}, device=RandDevice.CPU): length = latents.shape[0] if len(seeds) < length: raise ValueError(f"{len(seeds)} seeds in seed_override were provided, but at least {length} are required to work with the current latents.") seeds = seeds[:length] single_shape = (1, latents.shape[1], latents.shape[2], latents.shape[3]) all_noises = [] for seed in seeds: generator, raw_device = get_generator(device, seed+seed_offset) all_noises.append(torch.randn(single_shape, dtype=latents.dtype, layout=latents.layout, generator=generator, device=raw_device).to(device="cpu")) return torch.cat(all_noises, dim=0) @staticmethod def _create_common_noise(seed: int, latents: Tensor, noise_type: str=NoiseLayerType.DEFAULT, batch_offset: int=0, extra_args: dict={}, device=RandDevice.CPU): if noise_type == NoiseLayerType.EMPTY: return torch.zeros_like(latents) return None @staticmethod def _create_derivative_noise(noise: Tensor, noise_type: str, seed: int, extra_args: dict, device=RandDevice.CPU): derivative_func = DERIVATIVE_NOISE_FUNC_MAP.get(noise_type, None) if derivative_func is None: return None return derivative_func(noise=noise, seed=seed, extra_args=extra_args, device=device) @staticmethod def _convert_to_repeated_context(noise: Tensor, extra_args: dict, device=RandDevice.CPU, **kwargs): # if no context_length, return unmodified noise opts: ContextOptionsGroup = extra_args["context_options"] context_length: int = opts.context_length if not opts.view_options else opts.view_options.context_length if context_length is None: return noise length = noise.shape[0] noise = noise[:context_length] cat_count = (length // context_length) + 1 return torch.cat([noise] * cat_count, dim=0)[:length] @staticmethod def _convert_to_freenoise(noise: Tensor, seed: int, extra_args: dict, device=RandDevice.CPU, **kwargs): # if no context_length, return unmodified noise opts: ContextOptionsGroup = extra_args["context_options"] context_length: int = opts.context_length if not opts.view_options else opts.view_options.context_length context_overlap: int = opts.context_overlap if not opts.view_options else opts.view_options.context_overlap video_length: int = noise.shape[0] if context_length is None: return noise delta = context_length - context_overlap generator, _ = get_generator(RandDevice.CPU, seed) # no point in ever using non-CPU to just shuffle indexes for start_idx in range(0, video_length-context_length, delta): # start_idx corresponds to the beginning of a context window # goal: place shuffled in the delta region right after the end of the context window # if space after context window is not enough to place the noise, adjust and finish place_idx = start_idx + context_length # if place_idx is outside the valid indexes, we are already finished if place_idx >= video_length: break end_idx = place_idx - 1 # if there is not enough room to copy delta amount of indexes, copy limited amount and finish if end_idx + delta >= video_length: final_delta = video_length - place_idx # generate list of indexes in final delta region list_idx = torch.Tensor(list(range(start_idx,start_idx+final_delta))).to(torch.long) # shuffle list list_idx = list_idx[torch.randperm(final_delta, generator=generator)] # apply shuffled indexes noise[place_idx:place_idx+final_delta] = noise[list_idx] break # otherwise, do normal behavior # generate list of indexes in delta region list_idx = torch.Tensor(list(range(start_idx,start_idx+delta))).to(torch.long) # shuffle list list_idx = list_idx[torch.randperm(delta, generator=generator)] # apply shuffled indexes noise[place_idx:place_idx+delta] = noise[list_idx] return noise DERIVATIVE_NOISE_FUNC_MAP = { NoiseLayerType.REPEATED_CONTEXT: SeedNoiseGeneration._convert_to_repeated_context, NoiseLayerType.FREENOISE: SeedNoiseGeneration._convert_to_freenoise, } class IterationOptions: SAMPLER = "sampler" def __init__(self, iterations: int=1, cache_init_noise=False, cache_init_latents=False, iter_batch_offset: int=0, iter_seed_offset: int=0): self.iterations = iterations self.cache_init_noise = cache_init_noise self.cache_init_latents = cache_init_latents self.iter_batch_offset = iter_batch_offset self.iter_seed_offset = iter_seed_offset self.need_sampler = False def get_sigma(self, model: ModelPatcher, step: int): model_sampling = model.model.model_sampling if "model_sampling" in model.object_patches: model_sampling = model.object_patches["model_sampling"] return model_sampling.sigmas[step] def initialize(self, latents: Tensor): pass def preprocess_latents(self, curr_i: int, model: ModelPatcher, latents: Tensor, noise: Tensor, seed: int, sample_settings: SampleSettings, noise_extra_args: dict, **kwargs): if curr_i == 0 or (self.iter_batch_offset == 0 and self.iter_seed_offset == 0): return latents, noise temp_sample_settings = sample_settings.clone() temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i return latents, temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None, extra_args=noise_extra_args, force_create_noise=True) class FreeInitOptions(IterationOptions): FREEINIT_SAMPLER = "FreeInit [sampler sigma]" FREEINIT_MODEL = "FreeInit [model sigma]" DINKINIT_V1 = "DinkInit_v1" LIST = [FREEINIT_SAMPLER, FREEINIT_MODEL, DINKINIT_V1] def __init__(self, iterations: int, step: int=999, apply_to_1st_iter: bool=False, filter=freeinit.FreeInitFilter.GAUSSIAN, d_s=0.25, d_t=0.25, n=4, init_type=FREEINIT_SAMPLER, iter_batch_offset: int=0, iter_seed_offset: int=1): super().__init__(iterations=iterations, cache_init_noise=True, cache_init_latents=True, iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset) self.apply_to_1st_iter = apply_to_1st_iter self.step = step self.filter = filter self.d_s = d_s self.d_t = d_t self.n = n self.freq_filter = None self.freq_filter2 = None self.need_sampler = True if init_type in [self.FREEINIT_SAMPLER] else False self.init_type = init_type def initialize(self, latents: Tensor): self.freq_filter = freeinit.get_freq_filter(latents.shape, device=latents.device, filter_type=self.filter, n=self.n, d_s=self.d_s, d_t=self.d_t) def preprocess_latents(self, curr_i: int, model: ModelPatcher, latents: Tensor, noise: Tensor, cached_latents: Tensor, cached_noise: Tensor, seed:int, sample_settings: SampleSettings, noise_extra_args: dict, sampler: comfy.samplers.KSampler=None, **kwargs): # if first iter and should not apply, do nothing if curr_i == 0 and not self.apply_to_1st_iter: return latents, noise # otherwise, do FreeInit stuff if self.init_type in [self.FREEINIT_SAMPLER, self.FREEINIT_MODEL]: # NOTE: This should be very close (if not exactly) to how FreeInit is intended to initialize noise the latents. # The trick is that FreeInit is dependent on the behavior of diffuser's DDIMScheduler.add_noise function. # The typical noising method of latents + noise * sigma will NOT work. # 1. apply initial noise with appropriate step sigma, normalized against scale_factor if sampler is not None: sigma = sampler.sigmas[999-self.step].to(latents.device) / (model.model.latent_format.scale_factor) else: sigma = self.get_sigma(model, self.step-1000).to(latents.device) / (model.model.latent_format.scale_factor) alpha_cumprod = 1 / ((sigma * sigma) + 1) sqrt_alpha_prod = alpha_cumprod ** 0.5 sqrt_one_minus_alpha_prod = (1 - alpha_cumprod) ** 0.5 noised_latents = latents * sqrt_alpha_prod + noise.to(dtype=latents.dtype, device=latents.device) * sqrt_one_minus_alpha_prod # 2. create random noise z_rand for high frequency temp_sample_settings = sample_settings.clone() temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i z_rand = temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None, extra_args=noise_extra_args, force_create_noise=True) # 3. noise reinitialization - combines low freq. noise from noised_latents and high freq. noise from z_rand noised_latents = freeinit.freq_mix_3d(x=noised_latents, noise=z_rand, LPF=self.freq_filter) return cached_latents, noised_latents elif self.init_type == self.DINKINIT_V1: # NOTE: This was my first attempt at implementing FreeInit; it sorta works due to my alpha_cumprod shenanigans, # but completely by accident. # 1. apply initial noise with appropriate step sigma sigma = self.get_sigma(model, self.step-1000).to(latents.device) alpha_cumprod = 1 / ((sigma * sigma) + 1) #1 / ((sigma * sigma)) # 1 / ((sigma * sigma) + 1) noised_latents = (latents + (cached_noise.to(dtype=latents.dtype, device=latents.device) * sigma)) * alpha_cumprod # 2. create random noise z_rand for high frequency temp_sample_settings = sample_settings.clone() temp_sample_settings.batch_offset += self.iter_batch_offset * curr_i temp_sample_settings.seed_offset += self.iter_seed_offset * curr_i z_rand = temp_sample_settings.prepare_noise(seed=seed, latents=latents, noise=None, extra_args=noise_extra_args, force_create_noise=True) ####z_rand = torch.randn_like(latents, dtype=latents.dtype, device=latents.device) # 3. noise reinitialization - combines low freq. noise from noised_latents and high freq. noise from z_rand noised_latents = freeinit.freq_mix_3d(x=noised_latents, noise=z_rand, LPF=self.freq_filter) return cached_latents, noised_latents else: raise ValueError(f"FreeInit init_type '{self.init_type}' is not recognized.") class NoiseCalibration: def __init__(self, scale: float=0.5, calib_iterations: int=1): self.scale = scale self.calib_iterations = calib_iterations def perform_calibration(self, sample_func: Callable, model: ModelPatcher, latents: Tensor, noise: Tensor, is_custom: bool, args: list, kwargs: dict): if is_custom: return self._perform_calibration_custom(sample_func=sample_func, model=model, latents=latents, noise=noise, _args=args, _kwargs=kwargs) return self._perform_calibration_not_custom(sample_func=sample_func, model=model, latents=latents, noise=noise, args=args, kwargs=kwargs) def _perform_calibration_custom(self, sample_func: Callable, model: ModelPatcher, latents: Tensor, noise: Tensor, _args: list, _kwargs: dict): args = _args.copy() kwargs = _kwargs.copy() # need to get sigmas to be used in sampling and for noise calc sigmas = args[2] # use first 2 sigmas as real sigmas (2 sigmas = 1 step) sigmas = sigmas[:2] args[2] = sigmas # divide by scale factor sigma = sigmas[0] / (model.model.latent_format.scale_factor) alpha_cumprod = 1 / ((sigma * sigma) + 1) sqrt_alpha_prod = alpha_cumprod ** 0.5 sqrt_one_minus_alpha_prod = (1 - alpha_cumprod) ** 0.5 zero_noise = torch.zeros_like(noise) new_latents = latents# / (model.model.latent_format.scale_factor) #new_latents = latents * (model.model.latent_format.scale_factor) for _ in range(self.calib_iterations): # TODO: do i need to use DDIM noising, or will ComfyUI's work? x = new_latents * sqrt_alpha_prod + noise * sqrt_one_minus_alpha_prod #x = latents #x = latents + noise * sigma #torch.sqrt(1.0 + sigma ** 2.0) # replace latents in args with x args[-1] = x e_t_theta = sample_func(model, zero_noise, *args, **kwargs) * (model.model.latent_format.scale_factor) x_0_t = (x - sqrt_one_minus_alpha_prod * e_t_theta) / sqrt_alpha_prod freq_delta = (self.get_low_or_high_fft(x_0_t, self.scale, is_low=False) - self.get_low_or_high_fft(new_latents, self.scale, is_low=False)) noise = e_t_theta + sqrt_alpha_prod / sqrt_one_minus_alpha_prod * freq_delta #return latents, noise #x = latents * sqrt_alpha_prod + noise * sqrt_one_minus_alpha_prod #return zero_noise, x #noise * (model.model.latent_format.scale_factor) return latents, noise# * (model.model.latent_format.scale_factor) def _perform_calibration_not_custom(self, sample_func: Callable, model: ModelPatcher, latents: Tensor, noise: Tensor, args: list, kwargs: dict): return latents, noise @staticmethod # From NoiseCalibration code at https://github.com/yangqy1110/NC-SDEdit/ def get_low_or_high_fft(x: Tensor, scale: float, is_low=True): # reshape to match intended dims; starts in b c h w, turn into c b h w x = rearrange(x, "b c h w -> c b h w") # FFT x_freq = fft.fftn(x, dim=(-2, -1)) x_freq = fft.fftshift(x_freq, dim=(-2, -1)) C, T, H, W = x_freq.shape # extract if is_low: mask = torch.zeros((C, T, H, W), device=x.device) crow, ccol = H // 2, W // 2 mask[..., crow - int(crow * scale):crow + int(crow * scale), ccol - int(ccol * scale):ccol + int(ccol * scale)] = 1 else: mask = torch.ones((C, T, H, W), device=x.device) crow, ccol = H // 2, W //2 mask[..., crow - int(crow * scale):crow + int(crow * scale), ccol - int(ccol * scale):ccol + int(ccol * scale)] = 0 x_freq = x_freq * mask # IFFT x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real # rearrange back to ComfyUI expected dims x_filtered = rearrange(x_filtered, "c b h w -> b c h w") return x_filtered class CFGExtras: def __init__(self, call_fn: Callable): self.call_fn = call_fn class CFGExtrasGroup: def __init__(self): self.extras: list[CFGExtras] = [] def add(self, extra: CFGExtras): self.extras.append(extra) def is_empty(self) -> bool: return len(self.extras) == 0 def clone(self): cloned = CFGExtrasGroup() cloned.extras = self.extras.copy() return cloned class CustomCFGKeyframe: def __init__(self, cfg_multival: Union[float, Tensor], start_percent=0.0, guarantee_steps=1, cfg_extras: CFGExtrasGroup=None): self.cfg_multival = cfg_multival self.cfg_extras = cfg_extras # scheduling self.start_percent = float(start_percent) self.start_t = 999999999.9 self.guarantee_steps = guarantee_steps def clone(self): c = CustomCFGKeyframe(cfg_multival=self.cfg_multival, start_percent=self.start_percent, guarantee_steps=self.guarantee_steps) c.start_t = self.start_t return c class CustomCFGKeyframeGroup: def __init__(self): self.keyframes: list[CustomCFGKeyframe] = [] self._current_keyframe: CustomCFGKeyframe = None self._current_used_steps: int = 0 self._current_index: int = 0 self._previous_t = -1 def reset(self): self._current_keyframe = None self._current_used_steps = 0 self._current_index = 0 self._set_first_as_current() def add(self, keyframe: CustomCFGKeyframe): # add to end of list, then sort self.keyframes.append(keyframe) self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent") self._set_first_as_current() def _set_first_as_current(self): if len(self.keyframes) > 0: self._current_keyframe = self.keyframes[0] else: self._current_keyframe = None def has_index(self, index: int) -> int: return index >=0 and index < len(self.keyframes) def is_empty(self) -> bool: return len(self.keyframes) == 0 def clone(self): cloned = CustomCFGKeyframeGroup() for keyframe in self.keyframes: cloned.keyframes.append(keyframe) cloned._set_first_as_current() return cloned def initialize_timesteps(self, model: BaseModel): for keyframe in self.keyframes: keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent) def prepare_current_keyframe(self, t: Tensor): curr_t: float = t[0] # if curr_t same as before, do nothing as step already accounted for if curr_t == self._previous_t: return prev_index = self._current_index # if met guaranteed steps, look for next keyframe in case need to switch if self._current_used_steps >= self._current_keyframe.guarantee_steps: # if has next index, loop through and see if need t oswitch if self.has_index(self._current_index+1): for i in range(self._current_index+1, len(self.keyframes)): eval_c = self.keyframes[i] # check if start_t is greater or equal to curr_t # NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling if eval_c.start_t >= curr_t: self._current_index = i self._current_keyframe = eval_c self._current_used_steps = 0 # if guarantee_steps greater than zero, stop searching for other keyframes if self._current_keyframe.guarantee_steps > 0: break # if eval_c is outside the percent range, stop looking further else: break # update steps current context is used self._current_used_steps += 1 # update previous_t self._previous_t = curr_t def get_cfg_scale(self, cond: Tensor): cond_scale = self.cfg_multival if isinstance(cond_scale, Tensor): cond_scale = prepare_mask_batch(cond_scale.to(cond.dtype).to(cond.device), cond.shape) cond_scale = extend_to_batch_size(cond_scale, cond.shape[0]) return cond_scale def get_model_options(self, model_options: dict[str]): cfg_extras = self.cfg_extras if cfg_extras is not None: for extra in cfg_extras.extras: model_options = extra.call_fn(model_options) return model_options def patch_model(self, model: ModelPatcher) -> ModelPatcher: # NOTE: no longer used at the moment, as most sampler_cfg_function patches should work with tensor cfg_scales, # meaning get_cfg_scale is a direct replacement def evolved_custom_cfg(args): cond: Tensor = args["cond"] uncond: Tensor = args["uncond"] # cond scale is based purely off of CustomCFG - cond_scale input in sampler is ignored! cond_scale = self.cfg_multival if isinstance(cond_scale, Tensor): cond_scale = prepare_mask_batch(cond_scale.to(cond.dtype).to(cond.device), cond.shape) cond_scale = extend_to_batch_size(cond_scale, cond.shape[0]) return uncond + (cond - uncond) * cond_scale model = model.clone() model.set_model_sampler_cfg_function(evolved_custom_cfg) return model # properties shadow those of CustomCFGKeyframe @property def cfg_multival(self): if self._current_keyframe != None: return self._current_keyframe.cfg_multival return None @property def cfg_extras(self): if self._current_keyframe != None: return self._current_keyframe.cfg_extras return None class NoisedImageInjectOptions: def __init__(self, x=0, y=0): self.x = x self.y = y def clone(self): return NoisedImageInjectOptions(x=self.x, y=self.y) class NoisedImageToInject: def __init__(self, image: Tensor, mask: Tensor, vae: VAE, start_percent: float, guarantee_steps: int=1, invert_mask=False, resize_image=True, strength_multival=None, img_inject_opts: NoisedImageInjectOptions=None): self.image = image self.mask = mask self.vae = vae self.invert_mask = invert_mask self.resize_image = resize_image self.strength_multival = 1.0 if strength_multival is None else strength_multival if img_inject_opts is None: img_inject_opts = NoisedImageInjectOptions() self.img_inject_opts = img_inject_opts # scheduling self.start_percent = float(start_percent) self.start_t = 999999999.9 self.start_timestep = 999 self.guarantee_steps = guarantee_steps def clone(self): cloned = NoisedImageToInject(image=self.image, vae=self.vae, start_percent=self.start_percent, guarantee_steps=self.guarantee_steps, invert_mask=self.invert_mask, resize_image=self.resize_image, img_inject_opts=self.img_inject_opts) cloned.start_t = self.start_t cloned.start_timestep = self.start_timestep return cloned class NoisedImageToInjectGroup: def __init__(self): self.injections: list[NoisedImageToInject] = [] self._current_index: int = -1 self._current_used_steps: int = 0 @property def current_injection(self): return self.injections[self._current_index] def reset(self): self._current_index = -1 self._current_used_steps: int = 0 def add(self, to_inject: NoisedImageToInject): # add to end of list, then sort self.injections.append(to_inject) self.injections = get_sorted_list_via_attr(self.injections, "start_percent") def is_empty(self) -> bool: return len(self.injections) == 0 def has_index(self, index: int) -> int: return index >=0 and index < len(self.injections) def clone(self): cloned = NoisedImageToInjectGroup() for to_inject in self.injections: cloned.injections.append(to_inject) return cloned def initialize_timesteps(self, model: BaseModel): for to_inject in self.injections: to_inject.start_t = model.model_sampling.percent_to_sigma(to_inject.start_percent) to_inject.start_timestep = model.model_sampling.timestep(torch.tensor(to_inject.start_t)) def ksampler_get_injections(self, model: ModelPatcher, scheduler: str, sampler_name: str, denoise: float, force_full_denoise: bool, start_step: int, last_step: int, total_steps: int) -> tuple[list[list[int]], list[NoisedImageToInject]]: actual_last_step = min(last_step, total_steps) steps = list(range(start_step, actual_last_step+1)) # create sampler that will be used to get sigmas sampler = comfy.samplers.KSampler(model, steps=total_steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options) # replicate KSampler.sample function to get the exact sigmas sigmas = sampler.sigmas if last_step is not None and last_step < (len(sigmas) - 1): sigmas = sigmas[:last_step + 1] if force_full_denoise: sigmas[-1] = 0 if start_step is not None: if start_step < (len(sigmas) - 1): sigmas = sigmas[start_step:] else: return [[start_step,actual_last_step], []] assert len(steps) == len(sigmas) model_sampling = model.get_model_object("model_sampling") timesteps = [model_sampling.timestep(x) for x in sigmas] # get actual ranges + injections ranges, injections = self._prepare_injections(timesteps=timesteps) # ranges are given with end-exclusive index, so subtract by 1 to get real step value steps_list = [[steps[x[0]],steps[x[1]-1]] for x in ranges] return steps_list, injections def custom_ksampler_get_injections(self, model: ModelPatcher, sigmas: Tensor) -> tuple[list[list[Tensor]], list[NoisedImageToInject]]: model_sampling = model.get_model_object("model_sampling") timesteps = [] for i in range(sigmas.shape[0]): timesteps.append(model_sampling.timestep(sigmas[i])) # get actual ranges + injections ranges, injections = self._prepare_injections(timesteps=timesteps) sigmas_list = [sigmas[x[0]:x[1]] for x in ranges] return sigmas_list, injections def _prepare_injections(self, timesteps: list[Tensor]) -> tuple[list[list[Tensor]], list[NoisedImageToInject]]: range_start = timesteps[0] range_end = timesteps[-1] # if nothing to inject, return all indexes of timesteps and no injections if self.is_empty(): return ([(0, len(timesteps))], []) # otherwise, need to populate lists timesteps_list: list[list[Tensor]] = [] injection_list: list[NoisedImageToInject] = [] remaining_timesteps = timesteps.copy() remaining_offset = 0 # NOTE: timesteps start at 999 and end at 0; the smaller the timestep, the 'later' the step for eval_c in self.injections: if len(remaining_timesteps) <= 2: break current_used_steps = 0 # if start_timestep is greater than range_start, ignore it if eval_c.start_timestep > range_start: continue # if start_timestep is less than range_end, ignore it if eval_c.start_timestep < range_end: continue while current_used_steps < eval_c.guarantee_steps: if len(remaining_timesteps) <= 2: break # otherwise, make a split in timesteps broken_nicely = False for i in range(1, len(remaining_timesteps)-1): # if smaller than timestep, look at next timestep if eval_c.start_timestep < remaining_timesteps[i]: continue # if only one timestep would be leftover, then end if len(remaining_timesteps[i:]) < 2: broken_nicely = True break new_timestep_range = (remaining_offset, remaining_offset+i+1) timesteps_list.append(new_timestep_range) injection_list.append(eval_c) current_used_steps += 1 remaining_timesteps = remaining_timesteps[i:] remaining_offset += i # expected break broken_nicely = True break # did not find a match for the timestep, so should break out of while loop if not broken_nicely: break # add remaining timestep range timesteps_list.append((remaining_offset, remaining_offset+len(remaining_timesteps))) # return lists - timesteps list len should be one greater than injection list len (fenceposts problem) assert len(timesteps_list) == len(injection_list) + 1 return timesteps_list, injection_list