File size: 9,198 Bytes
08578d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: msoft_detr_finetuned_cppe5_5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# msoft_detr_finetuned_cppe5_5

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6502
- Map: 0.1506
- Map 50: 0.3241
- Map 75: 0.1179
- Map Small: 0.0383
- Map Medium: 0.1155
- Map Large: 0.2123
- Mar 1: 0.1856
- Mar 10: 0.3707
- Mar 100: 0.3953
- Mar Small: 0.1845
- Mar Medium: 0.3383
- Mar Large: 0.5613
- Map Coverall: 0.4385
- Mar 100 Coverall: 0.6243
- Map Face Shield: 0.0432
- Mar 100 Face Shield: 0.3886
- Map Gloves: 0.0719
- Mar 100 Gloves: 0.3103
- Map Goggles: 0.0309
- Mar 100 Goggles: 0.2846
- Map Mask: 0.1683
- Mar 100 Mask: 0.3684

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 50   | 3.3082          | 0.0005 | 0.0023 | 0.0    | 0.0005    | 0.0008     | 0.0004    | 0.0007 | 0.0115 | 0.0303  | 0.0124    | 0.0346     | 0.0328    | 0.0006       | 0.0631           | 0.0             | 0.0                 | 0.0015     | 0.0531         | 0.0         | 0.0             | 0.0002   | 0.0351       |
| No log        | 2.0   | 100  | 2.5406          | 0.0093 | 0.0254 | 0.0058 | 0.0083    | 0.0184     | 0.0093    | 0.0353 | 0.1003 | 0.1367  | 0.0596    | 0.1127     | 0.176     | 0.0281       | 0.2554           | 0.0012          | 0.038               | 0.003      | 0.1402         | 0.0012      | 0.0246          | 0.0133   | 0.2253       |
| No log        | 3.0   | 150  | 2.2947          | 0.0378 | 0.097  | 0.0256 | 0.0102    | 0.0315     | 0.0531    | 0.0876 | 0.188  | 0.2363  | 0.1059    | 0.1821     | 0.3366    | 0.1268       | 0.4113           | 0.0159          | 0.119               | 0.0042     | 0.2004         | 0.0175      | 0.1492          | 0.0248   | 0.3013       |
| No log        | 4.0   | 200  | 2.1994          | 0.0417 | 0.0962 | 0.0321 | 0.0092    | 0.032      | 0.0541    | 0.0946 | 0.2085 | 0.2556  | 0.0886    | 0.194      | 0.3656    | 0.1454       | 0.4829           | 0.0148          | 0.1165              | 0.0059     | 0.1897         | 0.0075      | 0.1585          | 0.0349   | 0.3302       |
| No log        | 5.0   | 250  | 2.1116          | 0.0609 | 0.1345 | 0.0457 | 0.0149    | 0.0454     | 0.0779    | 0.1193 | 0.2433 | 0.2826  | 0.1029    | 0.2107     | 0.4202    | 0.2176       | 0.5306           | 0.0255          | 0.1861              | 0.011      | 0.2179         | 0.009       | 0.1738          | 0.0417   | 0.3044       |
| No log        | 6.0   | 300  | 2.0783          | 0.0523 | 0.1158 | 0.043  | 0.0143    | 0.0381     | 0.0587    | 0.1021 | 0.2353 | 0.2789  | 0.1027    | 0.2118     | 0.3719    | 0.1791       | 0.5491           | 0.0137          | 0.1785              | 0.0126     | 0.1902         | 0.0116      | 0.1846          | 0.0448   | 0.292        |
| No log        | 7.0   | 350  | 2.0252          | 0.0686 | 0.1619 | 0.0602 | 0.0155    | 0.051      | 0.0825    | 0.1253 | 0.2744 | 0.31    | 0.1124    | 0.2388     | 0.4518    | 0.2246       | 0.5617           | 0.0207          | 0.2532              | 0.0141     | 0.2326         | 0.0121      | 0.1708          | 0.0713   | 0.332        |
| No log        | 8.0   | 400  | 1.9021          | 0.0952 | 0.2082 | 0.076  | 0.0155    | 0.0727     | 0.1111    | 0.1262 | 0.2869 | 0.3243  | 0.1054    | 0.2691     | 0.4416    | 0.3488       | 0.6284           | 0.0199          | 0.2114              | 0.0274     | 0.25           | 0.0109      | 0.2015          | 0.0689   | 0.3302       |
| No log        | 9.0   | 450  | 1.8629          | 0.1124 | 0.2367 | 0.1016 | 0.0268    | 0.0809     | 0.1382    | 0.1613 | 0.3163 | 0.3522  | 0.1259    | 0.2844     | 0.5206    | 0.372        | 0.6162           | 0.0335          | 0.3                 | 0.0289     | 0.267          | 0.0193      | 0.2262          | 0.1082   | 0.3516       |
| 3.5058        | 10.0  | 500  | 1.7706          | 0.1132 | 0.2447 | 0.0912 | 0.0249    | 0.0863     | 0.1384    | 0.1611 | 0.3268 | 0.3662  | 0.1789    | 0.3043     | 0.5176    | 0.3747       | 0.5905           | 0.0239          | 0.3051              | 0.0317     | 0.3009         | 0.0284      | 0.2415          | 0.1074   | 0.3929       |
| 3.5058        | 11.0  | 550  | 1.7552          | 0.1238 | 0.2833 | 0.0924 | 0.032     | 0.1008     | 0.1517    | 0.1603 | 0.3388 | 0.3762  | 0.1731    | 0.3242     | 0.5294    | 0.3793       | 0.5757           | 0.0325          | 0.362               | 0.0424     | 0.308          | 0.0275      | 0.2554          | 0.1374   | 0.38         |
| 3.5058        | 12.0  | 600  | 1.7298          | 0.1275 | 0.2938 | 0.0959 | 0.0361    | 0.0978     | 0.1648    | 0.1692 | 0.3493 | 0.382   | 0.1624    | 0.3309     | 0.5347    | 0.3959       | 0.6158           | 0.0438          | 0.381               | 0.0477     | 0.3022         | 0.0255      | 0.2662          | 0.1247   | 0.3449       |
| 3.5058        | 13.0  | 650  | 1.7136          | 0.136  | 0.2982 | 0.0999 | 0.0341    | 0.1025     | 0.1757    | 0.1758 | 0.3593 | 0.3918  | 0.178     | 0.3362     | 0.55      | 0.4242       | 0.6225           | 0.0469          | 0.381               | 0.0507     | 0.3022         | 0.0258      | 0.2862          | 0.1326   | 0.3671       |
| 3.5058        | 14.0  | 700  | 1.6856          | 0.1451 | 0.319  | 0.1159 | 0.0361    | 0.1075     | 0.1986    | 0.1834 | 0.3631 | 0.395   | 0.1736    | 0.3379     | 0.5598    | 0.4343       | 0.641            | 0.0486          | 0.381               | 0.0599     | 0.3076         | 0.0298      | 0.2754          | 0.1527   | 0.3698       |
| 3.5058        | 15.0  | 750  | 1.6613          | 0.148  | 0.3162 | 0.1197 | 0.0394    | 0.1165     | 0.1989    | 0.1836 | 0.3721 | 0.399   | 0.1881    | 0.3358     | 0.5663    | 0.4398       | 0.6365           | 0.0451          | 0.3962              | 0.0639     | 0.3058         | 0.0348      | 0.2877          | 0.1563   | 0.3689       |
| 3.5058        | 16.0  | 800  | 1.6491          | 0.1487 | 0.3267 | 0.1178 | 0.0406    | 0.118      | 0.2019    | 0.19   | 0.3722 | 0.3981  | 0.1847    | 0.3418     | 0.5637    | 0.4385       | 0.6293           | 0.0404          | 0.381               | 0.068      | 0.3098         | 0.0319      | 0.3             | 0.1646   | 0.3702       |
| 3.5058        | 17.0  | 850  | 1.6468          | 0.1489 | 0.3263 | 0.1187 | 0.0374    | 0.1188     | 0.2089    | 0.1894 | 0.3708 | 0.3978  | 0.1931    | 0.3406     | 0.5609    | 0.4355       | 0.6288           | 0.0426          | 0.3848              | 0.0693     | 0.3129         | 0.0314      | 0.2892          | 0.1658   | 0.3733       |
| 3.5058        | 18.0  | 900  | 1.6533          | 0.1487 | 0.3212 | 0.1177 | 0.0356    | 0.1137     | 0.2078    | 0.1856 | 0.3703 | 0.3964  | 0.1931    | 0.3356     | 0.5642    | 0.4369       | 0.6266           | 0.0412          | 0.3899              | 0.0721     | 0.3098         | 0.0292      | 0.2846          | 0.164    | 0.3711       |
| 3.5058        | 19.0  | 950  | 1.6509          | 0.1503 | 0.3241 | 0.1176 | 0.0383    | 0.1153     | 0.2121    | 0.1843 | 0.3705 | 0.3953  | 0.1848    | 0.3379     | 0.5623    | 0.4378       | 0.6234           | 0.0433          | 0.3899              | 0.0713     | 0.3103         | 0.0309      | 0.2846          | 0.1681   | 0.3684       |
| 1.4402        | 20.0  | 1000 | 1.6502          | 0.1506 | 0.3241 | 0.1179 | 0.0383    | 0.1155     | 0.2123    | 0.1856 | 0.3707 | 0.3953  | 0.1845    | 0.3383     | 0.5613    | 0.4385       | 0.6243           | 0.0432          | 0.3886              | 0.0719     | 0.3103         | 0.0309      | 0.2846          | 0.1683   | 0.3684       |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.5.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1