File size: 2,150 Bytes
bac3b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_silero_mini_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_silero_mini_model
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5030
- Accuracy: 0.74
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.6843 | 1.0 | 38 | 0.6689 | 0.615 |
| 0.6019 | 2.0 | 76 | 0.6146 | 0.635 |
| 0.5591 | 3.0 | 114 | 0.5583 | 0.68 |
| 0.5717 | 4.0 | 152 | 0.5293 | 0.73 |
| 0.4943 | 5.0 | 190 | 0.5587 | 0.7 |
| 0.5018 | 6.0 | 228 | 0.5269 | 0.725 |
| 0.4932 | 7.0 | 266 | 0.5162 | 0.695 |
| 0.465 | 8.0 | 304 | 0.5303 | 0.72 |
| 0.4476 | 9.0 | 342 | 0.5220 | 0.735 |
| 0.4509 | 9.7467 | 370 | 0.5030 | 0.74 |
### Framework versions
- Transformers 4.47.0
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
|