paul
commited on
Commit
•
3d7b957
1
Parent(s):
f883043
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
- f1
|
12 |
+
model-index:
|
13 |
+
- name: cvt-13-384-in22k-FV-finetuned-memes
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Image Classification
|
17 |
+
type: image-classification
|
18 |
+
dataset:
|
19 |
+
name: imagefolder
|
20 |
+
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
+
args: default
|
24 |
+
metrics:
|
25 |
+
- name: Accuracy
|
26 |
+
type: accuracy
|
27 |
+
value: 0.8346213292117465
|
28 |
+
- name: Precision
|
29 |
+
type: precision
|
30 |
+
value: 0.8326806465391725
|
31 |
+
- name: Recall
|
32 |
+
type: recall
|
33 |
+
value: 0.8346213292117465
|
34 |
+
- name: F1
|
35 |
+
type: f1
|
36 |
+
value: 0.8322067261008879
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# cvt-13-384-in22k-FV-finetuned-memes
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/cvt-13-384-22k](https://huggingface.co/microsoft/cvt-13-384-22k) on the imagefolder dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.5595
|
47 |
+
- Accuracy: 0.8346
|
48 |
+
- Precision: 0.8327
|
49 |
+
- Recall: 0.8346
|
50 |
+
- F1: 0.8322
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 0.00012
|
70 |
+
- train_batch_size: 64
|
71 |
+
- eval_batch_size: 64
|
72 |
+
- seed: 42
|
73 |
+
- gradient_accumulation_steps: 4
|
74 |
+
- total_train_batch_size: 256
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 20
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| 1.4066 | 0.99 | 20 | 1.2430 | 0.5124 | 0.5141 | 0.5124 | 0.4371 |
|
85 |
+
| 1.0813 | 1.99 | 40 | 0.8244 | 0.6893 | 0.6834 | 0.6893 | 0.6616 |
|
86 |
+
| 0.8392 | 2.99 | 60 | 0.6334 | 0.7612 | 0.7670 | 0.7612 | 0.7570 |
|
87 |
+
| 0.7065 | 3.99 | 80 | 0.5819 | 0.7767 | 0.7799 | 0.7767 | 0.7672 |
|
88 |
+
| 0.5751 | 4.99 | 100 | 0.5365 | 0.8176 | 0.8216 | 0.8176 | 0.8130 |
|
89 |
+
| 0.4896 | 5.99 | 120 | 0.4943 | 0.8308 | 0.8257 | 0.8308 | 0.8265 |
|
90 |
+
| 0.4487 | 6.99 | 140 | 0.5399 | 0.8107 | 0.8069 | 0.8107 | 0.8054 |
|
91 |
+
| 0.4349 | 7.99 | 160 | 0.4892 | 0.8300 | 0.8285 | 0.8300 | 0.8273 |
|
92 |
+
| 0.43 | 8.99 | 180 | 0.4984 | 0.8454 | 0.8465 | 0.8454 | 0.8426 |
|
93 |
+
| 0.4372 | 9.99 | 200 | 0.5573 | 0.8192 | 0.8221 | 0.8192 | 0.8157 |
|
94 |
+
| 0.3994 | 10.99 | 220 | 0.5158 | 0.8300 | 0.8284 | 0.8300 | 0.8281 |
|
95 |
+
| 0.3883 | 11.99 | 240 | 0.5495 | 0.8354 | 0.8317 | 0.8354 | 0.8314 |
|
96 |
+
| 0.406 | 12.99 | 260 | 0.5298 | 0.8284 | 0.8285 | 0.8284 | 0.8246 |
|
97 |
+
| 0.3355 | 13.99 | 280 | 0.5401 | 0.8393 | 0.8346 | 0.8393 | 0.8357 |
|
98 |
+
| 0.395 | 14.99 | 300 | 0.5915 | 0.8308 | 0.8278 | 0.8308 | 0.8261 |
|
99 |
+
| 0.3612 | 15.99 | 320 | 0.5852 | 0.8408 | 0.8378 | 0.8408 | 0.8368 |
|
100 |
+
| 0.3765 | 16.99 | 340 | 0.5509 | 0.8385 | 0.8351 | 0.8385 | 0.8356 |
|
101 |
+
| 0.3688 | 17.99 | 360 | 0.5668 | 0.8416 | 0.8398 | 0.8416 | 0.8387 |
|
102 |
+
| 0.3503 | 18.99 | 380 | 0.5626 | 0.8393 | 0.8371 | 0.8393 | 0.8365 |
|
103 |
+
| 0.3611 | 19.99 | 400 | 0.5595 | 0.8346 | 0.8327 | 0.8346 | 0.8322 |
|
104 |
+
|
105 |
+
|
106 |
+
### Framework versions
|
107 |
+
|
108 |
+
- Transformers 4.24.0.dev0
|
109 |
+
- Pytorch 1.11.0+cu102
|
110 |
+
- Datasets 2.6.1.dev0
|
111 |
+
- Tokenizers 0.13.1
|