paul commited on
Commit
3d7b957
1 Parent(s): f883043

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: cvt-13-384-in22k-FV-finetuned-memes
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8346213292117465
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.8326806465391725
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.8346213292117465
34
+ - name: F1
35
+ type: f1
36
+ value: 0.8322067261008879
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # cvt-13-384-in22k-FV-finetuned-memes
43
+
44
+ This model is a fine-tuned version of [microsoft/cvt-13-384-22k](https://huggingface.co/microsoft/cvt-13-384-22k) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.5595
47
+ - Accuracy: 0.8346
48
+ - Precision: 0.8327
49
+ - Recall: 0.8346
50
+ - F1: 0.8322
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 0.00012
70
+ - train_batch_size: 64
71
+ - eval_batch_size: 64
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 256
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 20
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 1.4066 | 0.99 | 20 | 1.2430 | 0.5124 | 0.5141 | 0.5124 | 0.4371 |
85
+ | 1.0813 | 1.99 | 40 | 0.8244 | 0.6893 | 0.6834 | 0.6893 | 0.6616 |
86
+ | 0.8392 | 2.99 | 60 | 0.6334 | 0.7612 | 0.7670 | 0.7612 | 0.7570 |
87
+ | 0.7065 | 3.99 | 80 | 0.5819 | 0.7767 | 0.7799 | 0.7767 | 0.7672 |
88
+ | 0.5751 | 4.99 | 100 | 0.5365 | 0.8176 | 0.8216 | 0.8176 | 0.8130 |
89
+ | 0.4896 | 5.99 | 120 | 0.4943 | 0.8308 | 0.8257 | 0.8308 | 0.8265 |
90
+ | 0.4487 | 6.99 | 140 | 0.5399 | 0.8107 | 0.8069 | 0.8107 | 0.8054 |
91
+ | 0.4349 | 7.99 | 160 | 0.4892 | 0.8300 | 0.8285 | 0.8300 | 0.8273 |
92
+ | 0.43 | 8.99 | 180 | 0.4984 | 0.8454 | 0.8465 | 0.8454 | 0.8426 |
93
+ | 0.4372 | 9.99 | 200 | 0.5573 | 0.8192 | 0.8221 | 0.8192 | 0.8157 |
94
+ | 0.3994 | 10.99 | 220 | 0.5158 | 0.8300 | 0.8284 | 0.8300 | 0.8281 |
95
+ | 0.3883 | 11.99 | 240 | 0.5495 | 0.8354 | 0.8317 | 0.8354 | 0.8314 |
96
+ | 0.406 | 12.99 | 260 | 0.5298 | 0.8284 | 0.8285 | 0.8284 | 0.8246 |
97
+ | 0.3355 | 13.99 | 280 | 0.5401 | 0.8393 | 0.8346 | 0.8393 | 0.8357 |
98
+ | 0.395 | 14.99 | 300 | 0.5915 | 0.8308 | 0.8278 | 0.8308 | 0.8261 |
99
+ | 0.3612 | 15.99 | 320 | 0.5852 | 0.8408 | 0.8378 | 0.8408 | 0.8368 |
100
+ | 0.3765 | 16.99 | 340 | 0.5509 | 0.8385 | 0.8351 | 0.8385 | 0.8356 |
101
+ | 0.3688 | 17.99 | 360 | 0.5668 | 0.8416 | 0.8398 | 0.8416 | 0.8387 |
102
+ | 0.3503 | 18.99 | 380 | 0.5626 | 0.8393 | 0.8371 | 0.8393 | 0.8365 |
103
+ | 0.3611 | 19.99 | 400 | 0.5595 | 0.8346 | 0.8327 | 0.8346 | 0.8322 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.24.0.dev0
109
+ - Pytorch 1.11.0+cu102
110
+ - Datasets 2.6.1.dev0
111
+ - Tokenizers 0.13.1