--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-face-recognition results: - task: type: image-classification name: Image Classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - type: accuracy value: 0.999957997311828 name: Accuracy - task: type: image-classification name: Image Classification dataset: name: custom type: custom split: test metrics: - type: precision value: 1.0 name: Precision --- # vit-base-patch16-224-in21k-face-recognition This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0015 - Accuracy: 1.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0368 | 1.0 | 372 | 0.0346 | 1.0000 | | 0.0094 | 2.0 | 744 | 0.0092 | 1.0000 | | 0.0046 | 3.0 | 1116 | 0.0047 | 1.0000 | | 0.0029 | 4.0 | 1488 | 0.0029 | 1.0 | | 0.0022 | 5.0 | 1860 | 0.0023 | 0.9999 | | 0.0017 | 6.0 | 2232 | 0.0017 | 1.0 | | 0.0015 | 7.0 | 2604 | 0.0015 | 1.0 | | 0.0014 | 8.0 | 2976 | 0.0015 | 1.0000 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cu117 - Datasets 2.13.2 - Tokenizers 0.11.0