Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1867.80 +/- 132.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2e82d4604d7a458a3cbaf91cf726a0937a404cf4cb36b468e3cf50b35f3a8a1
|
3 |
+
size 129018
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f07633e9e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07633e9ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07633e9f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07633ee040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f07633ee0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f07633ee160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07633ee1f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f07633ee280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07633ee310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07633ee3a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07633ee430>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f07633e1cf0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1680230870243193512,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": null,
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMp+xT6jOHM/otN+Prc3obymn32/J88sP0fPcL+KbH2/H7rWvze44L9UMCy/M4l5P+8nZL/W7vG+66IqP6toHb/KR6k/Rn9hv6hQmb/5Dsy/7Klwv8v0FT42d8E/EkZSvqyehb+MKgE/9JoAwGWmYT9SSCo/FNdGv0HBoD5u6b0/+8W4Ptj0z75EwdG+yHGcvrPiVD92KBi/w2UQPzkFCT8xXpQ9YR0RwHXuXj9hlyw8Nb2Rvgrvor+3OhC/aYe2P9w0bb/JBCA8RLmNvlT8aMCrO3U/TLD9v4zL/j5PN5G/Ob86P2/huD5vEP8+91ujP+IZ7T85tZw/XSLKvYywmL810sI+p7XMPspJXr8NPBG+lp2OP3rrrj+DaF8/0L+VPFniqj+0qju89qwqv+ETnr58PfK+3ncuvzuw8z9KMKk9rJ6Fv4wqAT+My/4+ZaZhP7Ndyr06yom/vofaPX4lsD7DDYI/lwJNv3iaV7/Bg3e+ne8XPxnPFz8eYu+9e1HIPsnG9z8l/YK9U/FgP1mstb09RDI/rfWGvon4Ob/HE4M/319vv27K/j748Tg/vgzxvqyehb+MKgE/jMv+Pk83kb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACBWQS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUvr/PQAAAABMX+C/AAAAAMtrDz4AAAAAa032PwAAAABnBO08AAAAAHvo7j8AAAAA0SkKPgAAAADp1t+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EANQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7+gr0AAAAA71T4vwAAAAD4zpq9AAAAALoF6T8AAAAA4NmuvQAAAAAL7OY/AAAAAHTD/b0AAAAAThEBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI3bRrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMT+U9AAAAAJEJ678AAAAATFi6PQAAAACWDe4/AAAAAPvRcL0AAAAA6pf6PwAAAADnnjG9AAAAABLq878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Bs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHAAUvQAAAAA9eu+/AAAAANqP1z0AAAAA7s7sPwAAAABN9is9AAAAAPhF+T8AAAAA+9OrPQAAAADxGfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmZEBxPwd+MAWyUTegDjAF0lEdApKknD1oQF3V9lChoBkdAmv5WICU5dWgHTegDaAhHQKSpdkd3jdZ1fZQoaAZHQJoBuHk92X9oB03oA2gIR0CkqcxekYXPdX2UKGgGR0CbldHjZL7GaAdN6ANoCEdApLFYB3iaRnV9lChoBkdAkEqmzfJmumgHTegDaAhHQKS0TJf6XSl1fZQoaAZHQJhFEVpKzzFoB03oA2gIR0CktJUo0ALidX2UKGgGR0CaPPchTwUhaAdN6ANoCEdApLTjR6Ww/3V9lChoBkdAngrWUKRdQmgHTegDaAhHQKS8C4o7V8V1fZQoaAZHQJ7IOJJoTPBoB03oA2gIR0CkvvBKlHjIdX2UKGgGR0Cabd9lmOENaAdN6ANoCEdApL80z0pVj3V9lChoBkdAnTrV8b70nWgHTegDaAhHQKS/iSg5BC51fZQoaAZHQJ0zSxjawlloB03oA2gIR0CkxpXKbKA8dX2UKGgGR0Cb3sjW07bMaAdN6ANoCEdApMlvaews5HV9lChoBkdAmq9Tj7yhBmgHTegDaAhHQKTJvJOnEVF1fZQoaAZHQJo3zI1cdHVoB03oA2gIR0CkyhNvfj0ddX2UKGgGR0Cc1GVIZqEfaAdN6ANoCEdApNFykqMFU3V9lChoBkdAnP/buYx+KGgHTegDaAhHQKTU1mr8zhx1fZQoaAZHQJsVMiml67doB03oA2gIR0Ck1RnQhOgydX2UKGgGR0CalAtsN2C/aAdN6ANoCEdApNV7uKGcnXV9lChoBkdAnPUHTqjaf2gHTegDaAhHQKTc162v0RR1fZQoaAZHQJZ5qI+GGmFoB03oA2gIR0Ck37NayKNydX2UKGgGR0CXoxg62fCiaAdN6ANoCEdApN/76UJOWXV9lChoBkdAmN/+aF23a2gHTegDaAhHQKTgR4keIVN1fZQoaAZHQJ3nw052hZhoB03oA2gIR0Ck54/1xsEadX2UKGgGR0CeKNZWaMJhaAdN6ANoCEdApOp7U/fO2XV9lChoBkdAnsMBQizLOmgHTegDaAhHQKTqvuSfUWl1fZQoaAZHQKAsztpmEoRoB03oA2gIR0Ck6xY7JW/8dX2UKGgGR0CdOaBiTdLyaAdN6ANoCEdApPImhbnoxHV9lChoBkdAnN7OI/JNkGgHTegDaAhHQKT06MnZ00Z1fZQoaAZHQJ1zPevZAY5oB03oA2gIR0Ck9SwMYuTSdX2UKGgGR0CfkP8twrDqaAdN6ANoCEdApPV8JY1YQ3V9lChoBkdAnY8/336AOWgHTegDaAhHQKT83LYf4h51fZQoaAZHQJ8OZDRc/t9oB03oA2gIR0ClAAzCtRvWdX2UKGgGR0CgzxtJWeYlaAdN6ANoCEdApQBgpjMFEHV9lChoBkdAn07CDmKZUmgHTegDaAhHQKUAxBTGYKJ1fZQoaAZHQKBofwZOzppoB03oA2gIR0ClCC/dZaFFdX2UKGgGR0Cfv0NdZ7ojaAdN6ANoCEdApQr7blA/s3V9lChoBkdAoFDxjz7MxGgHTegDaAhHQKULQf1YhdN1fZQoaAZHQJ12+UzKs+5oB03oA2gIR0ClC5rF4s3AdX2UKGgGR0CaO3pobn5jaAdN6ANoCEdApRLMV8CxNnV9lChoBkdAmTS3yNGViWgHTegDaAhHQKUVxwCKaXt1fZQoaAZHQJnPEzKs+3ZoB03oA2gIR0ClFgqHfuTidX2UKGgGR0CXCpn6l+EzaAdN6ANoCEdApRZnmA9V3nV9lChoBkdAnNi207bL2mgHTegDaAhHQKUdPRdhRZV1fZQoaAZHQJ3R7tzCDVZoB03oA2gIR0ClH/bcfvF4dX2UKGgGR0CXjpS5iExqaAdN6ANoCEdApSBDQNTcZnV9lChoBkdAnmcZdGAkLWgHTegDaAhHQKUglHlOoHd1fZQoaAZHQJ3N7teD3/RoB03oA2gIR0ClKFlkQPI5dX2UKGgGR0Cb2NJCSidraAdN6ANoCEdApSumIyj59HV9lChoBkdAnR0f9gnc+WgHTegDaAhHQKUsAI+nqFB1fZQoaAZHQJ473+ZPVNJoB03oA2gIR0ClLFxHG0eEdX2UKGgGR0CbgbK3d9DyaAdN6ANoCEdApTOGrU9ZBHV9lChoBkdAnPYycslLOGgHTegDaAhHQKU2YzVMEid1fZQoaAZHQJmfs/FBIFxoB03oA2gIR0ClNqtpmEoOdX2UKGgGR0Ce5xuNPxhEaAdN6ANoCEdApTcD9S/CZXV9lChoBkdAmvK5OnEVFmgHTegDaAhHQKU+R0dzXBh1fZQoaAZHQJ5WZYdQwbloB03oA2gIR0ClQWTDfm9ydX2UKGgGR0CeHqxcmjTKaAdN6ANoCEdApUG7ZYgaFXV9lChoBkdAnEphoh6jWWgHTegDaAhHQKVCCbvPTod1fZQoaAZHQJnd7ljmSyNoB03oA2gIR0ClSQrxRVIadX2UKGgGR0CY2GM4tHx0aAdN6ANoCEdApUv2XHBDX3V9lChoBkdAmXjrrgOz6mgHTegDaAhHQKVMRSGahHt1fZQoaAZHQJ3PGAEt/WloB03oA2gIR0ClTJWAwwj/dX2UKGgGR0CW/4BgeA/caAdN6ANoCEdApVRhuAI6bXV9lChoBkdAnUGcbaRISWgHTegDaAhHQKVXjYChew91fZQoaAZHQJoSfFKkEcNoB03oA2gIR0ClV97tAs06dX2UKGgGR0CcdBt3fQ8faAdN6ANoCEdApVg22Zy+6HV9lChoBkdAmRFjgZTAFmgHTegDaAhHQKVfZqREF4d1fZQoaAZHQJmZwxQBPsRoB03oA2gIR0ClYl3umaYvdX2UKGgGR0CUZPxEORT1aAdN6ANoCEdApWKkqFyq/HV9lChoBkdAm36qISDh+GgHTegDaAhHQKVjD8aXKKZ1fZQoaAZHQJoDdC0F8ohoB03oA2gIR0ClaoO801qGdX2UKGgGR0CaTpyTY/VzaAdN6ANoCEdApW2XEXLvC3V9lChoBkdAl9zX+VC5VmgHTegDaAhHQKVt3RXwLE11fZQoaAZHQJ10RGz8gp1oB03oA2gIR0Clbi+gte2NdX2UKGgGR0CZo9L7GecyaAdN6ANoCEdApXVU9nscAHV9lChoBkdAmtJBKg7HQ2gHTegDaAhHQKV4OQ8OkLx1fZQoaAZHQJnUpR2r4nFoB03oA2gIR0CleI6P0Zm7dX2UKGgGR0Cd8sUB4lhPaAdN6ANoCEdApXj9J8OTaHV9lChoBkdAj4lJ40Mw12gHTegDaAhHQKWBYukDZDl1fZQoaAZHQJ2/ZkZrHlxoB03oA2gIR0ClhF+n62v0dX2UKGgGR0CdpFVD8cdYaAdN6ANoCEdApYSrrZ8KHHV9lChoBkdAm/Y+gL7XQWgHTegDaAhHQKWE+XmeUY91fZQoaAZHQJyss0waisZoB03oA2gIR0CljCPjOs1bdX2UKGgGR0CeNZp48lolaAdN6ANoCEdApY8V18stkHV9lChoBkdAnOaNMPBi1GgHTegDaAhHQKWPbXtjTa11fZQoaAZHQJw3fLZBcA1oB03oA2gIR0Clj7sM7U5NdX2UKGgGR0CfAqxVyWAxaAdN6ANoCEdApZdZ8hLXc3V9lChoBkdAmgRGl/H5rWgHTegDaAhHQKWaPXHzYmN1fZQoaAZHQJ6EkvHtF8ZoB03oA2gIR0Clmo/pUxVRdX2UKGgGR0CcqFOMVDa5aAdN6ANoCEdApZrgxFiKBXV9lChoBkdAnWiHJo0yg2gHTegDaAhHQKWhuGcnVoZ1fZQoaAZHQJzyOeyzHCJoB03oA2gIR0ClpMO/UONHdX2UKGgGR0CbZH++ueSTaAdN6ANoCEdApaUGryUcGXV9lChoBkdAnH4VpsXSB2gHTegDaAhHQKWlZ9Ujs2N1fZQoaAZHQJ0or4k/r0JoB03oA2gIR0ClrWQJPZZkdX2UKGgGR0CdoouW8h9taAdN6ANoCEdApbBvZqVQh3V9lChoBkdAnabAWepXIWgHTegDaAhHQKWwugX/HYJ1fZQoaAZHQJ3lb0Fr2xpoB03oA2gIR0ClsQ1pblijdX2UKGgGR0CeRS/QjUutaAdN6ANoCEdApbgu7+T/yXVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b9e9c8e187487ad93f21ddeb7ea53f5d77d98246e238f33c3336d9aa377ae54
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03dab7a5a0172f11dc9b7245efab23547146ab6aaf6ed13c3d0eb6fdce63e568
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.1+cu117
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.24.1
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07633e9e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07633e9ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07633e9f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07633ee040>", "_build": "<function ActorCriticPolicy._build at 0x7f07633ee0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f07633ee160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07633ee1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f07633ee280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07633ee310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07633ee3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07633ee430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f07633e1cf0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680230870243193512, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMp+xT6jOHM/otN+Prc3obymn32/J88sP0fPcL+KbH2/H7rWvze44L9UMCy/M4l5P+8nZL/W7vG+66IqP6toHb/KR6k/Rn9hv6hQmb/5Dsy/7Klwv8v0FT42d8E/EkZSvqyehb+MKgE/9JoAwGWmYT9SSCo/FNdGv0HBoD5u6b0/+8W4Ptj0z75EwdG+yHGcvrPiVD92KBi/w2UQPzkFCT8xXpQ9YR0RwHXuXj9hlyw8Nb2Rvgrvor+3OhC/aYe2P9w0bb/JBCA8RLmNvlT8aMCrO3U/TLD9v4zL/j5PN5G/Ob86P2/huD5vEP8+91ujP+IZ7T85tZw/XSLKvYywmL810sI+p7XMPspJXr8NPBG+lp2OP3rrrj+DaF8/0L+VPFniqj+0qju89qwqv+ETnr58PfK+3ncuvzuw8z9KMKk9rJ6Fv4wqAT+My/4+ZaZhP7Ndyr06yom/vofaPX4lsD7DDYI/lwJNv3iaV7/Bg3e+ne8XPxnPFz8eYu+9e1HIPsnG9z8l/YK9U/FgP1mstb09RDI/rfWGvon4Ob/HE4M/319vv27K/j748Tg/vgzxvqyehb+MKgE/jMv+Pk83kb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACBWQS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUvr/PQAAAABMX+C/AAAAAMtrDz4AAAAAa032PwAAAABnBO08AAAAAHvo7j8AAAAA0SkKPgAAAADp1t+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/EANQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO7+gr0AAAAA71T4vwAAAAD4zpq9AAAAALoF6T8AAAAA4NmuvQAAAAAL7OY/AAAAAHTD/b0AAAAAThEBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI3bRrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMT+U9AAAAAJEJ678AAAAATFi6PQAAAACWDe4/AAAAAPvRcL0AAAAA6pf6PwAAAADnnjG9AAAAABLq878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3Bs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHAAUvQAAAAA9eu+/AAAAANqP1z0AAAAA7s7sPwAAAABN9is9AAAAAPhF+T8AAAAA+9OrPQAAAADxGfW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJmZEBxPwd+MAWyUTegDjAF0lEdApKknD1oQF3V9lChoBkdAmv5WICU5dWgHTegDaAhHQKSpdkd3jdZ1fZQoaAZHQJoBuHk92X9oB03oA2gIR0CkqcxekYXPdX2UKGgGR0CbldHjZL7GaAdN6ANoCEdApLFYB3iaRnV9lChoBkdAkEqmzfJmumgHTegDaAhHQKS0TJf6XSl1fZQoaAZHQJhFEVpKzzFoB03oA2gIR0CktJUo0ALidX2UKGgGR0CaPPchTwUhaAdN6ANoCEdApLTjR6Ww/3V9lChoBkdAngrWUKRdQmgHTegDaAhHQKS8C4o7V8V1fZQoaAZHQJ7IOJJoTPBoB03oA2gIR0CkvvBKlHjIdX2UKGgGR0Cabd9lmOENaAdN6ANoCEdApL80z0pVj3V9lChoBkdAnTrV8b70nWgHTegDaAhHQKS/iSg5BC51fZQoaAZHQJ0zSxjawlloB03oA2gIR0CkxpXKbKA8dX2UKGgGR0Cb3sjW07bMaAdN6ANoCEdApMlvaews5HV9lChoBkdAmq9Tj7yhBmgHTegDaAhHQKTJvJOnEVF1fZQoaAZHQJo3zI1cdHVoB03oA2gIR0CkyhNvfj0ddX2UKGgGR0Cc1GVIZqEfaAdN6ANoCEdApNFykqMFU3V9lChoBkdAnP/buYx+KGgHTegDaAhHQKTU1mr8zhx1fZQoaAZHQJsVMiml67doB03oA2gIR0Ck1RnQhOgydX2UKGgGR0CalAtsN2C/aAdN6ANoCEdApNV7uKGcnXV9lChoBkdAnPUHTqjaf2gHTegDaAhHQKTc162v0RR1fZQoaAZHQJZ5qI+GGmFoB03oA2gIR0Ck37NayKNydX2UKGgGR0CXoxg62fCiaAdN6ANoCEdApN/76UJOWXV9lChoBkdAmN/+aF23a2gHTegDaAhHQKTgR4keIVN1fZQoaAZHQJ3nw052hZhoB03oA2gIR0Ck54/1xsEadX2UKGgGR0CeKNZWaMJhaAdN6ANoCEdApOp7U/fO2XV9lChoBkdAnsMBQizLOmgHTegDaAhHQKTqvuSfUWl1fZQoaAZHQKAsztpmEoRoB03oA2gIR0Ck6xY7JW/8dX2UKGgGR0CdOaBiTdLyaAdN6ANoCEdApPImhbnoxHV9lChoBkdAnN7OI/JNkGgHTegDaAhHQKT06MnZ00Z1fZQoaAZHQJ1zPevZAY5oB03oA2gIR0Ck9SwMYuTSdX2UKGgGR0CfkP8twrDqaAdN6ANoCEdApPV8JY1YQ3V9lChoBkdAnY8/336AOWgHTegDaAhHQKT83LYf4h51fZQoaAZHQJ8OZDRc/t9oB03oA2gIR0ClAAzCtRvWdX2UKGgGR0CgzxtJWeYlaAdN6ANoCEdApQBgpjMFEHV9lChoBkdAn07CDmKZUmgHTegDaAhHQKUAxBTGYKJ1fZQoaAZHQKBofwZOzppoB03oA2gIR0ClCC/dZaFFdX2UKGgGR0Cfv0NdZ7ojaAdN6ANoCEdApQr7blA/s3V9lChoBkdAoFDxjz7MxGgHTegDaAhHQKULQf1YhdN1fZQoaAZHQJ12+UzKs+5oB03oA2gIR0ClC5rF4s3AdX2UKGgGR0CaO3pobn5jaAdN6ANoCEdApRLMV8CxNnV9lChoBkdAmTS3yNGViWgHTegDaAhHQKUVxwCKaXt1fZQoaAZHQJnPEzKs+3ZoB03oA2gIR0ClFgqHfuTidX2UKGgGR0CXCpn6l+EzaAdN6ANoCEdApRZnmA9V3nV9lChoBkdAnNi207bL2mgHTegDaAhHQKUdPRdhRZV1fZQoaAZHQJ3R7tzCDVZoB03oA2gIR0ClH/bcfvF4dX2UKGgGR0CXjpS5iExqaAdN6ANoCEdApSBDQNTcZnV9lChoBkdAnmcZdGAkLWgHTegDaAhHQKUglHlOoHd1fZQoaAZHQJ3N7teD3/RoB03oA2gIR0ClKFlkQPI5dX2UKGgGR0Cb2NJCSidraAdN6ANoCEdApSumIyj59HV9lChoBkdAnR0f9gnc+WgHTegDaAhHQKUsAI+nqFB1fZQoaAZHQJ473+ZPVNJoB03oA2gIR0ClLFxHG0eEdX2UKGgGR0CbgbK3d9DyaAdN6ANoCEdApTOGrU9ZBHV9lChoBkdAnPYycslLOGgHTegDaAhHQKU2YzVMEid1fZQoaAZHQJmfs/FBIFxoB03oA2gIR0ClNqtpmEoOdX2UKGgGR0Ce5xuNPxhEaAdN6ANoCEdApTcD9S/CZXV9lChoBkdAmvK5OnEVFmgHTegDaAhHQKU+R0dzXBh1fZQoaAZHQJ5WZYdQwbloB03oA2gIR0ClQWTDfm9ydX2UKGgGR0CeHqxcmjTKaAdN6ANoCEdApUG7ZYgaFXV9lChoBkdAnEphoh6jWWgHTegDaAhHQKVCCbvPTod1fZQoaAZHQJnd7ljmSyNoB03oA2gIR0ClSQrxRVIadX2UKGgGR0CY2GM4tHx0aAdN6ANoCEdApUv2XHBDX3V9lChoBkdAmXjrrgOz6mgHTegDaAhHQKVMRSGahHt1fZQoaAZHQJ3PGAEt/WloB03oA2gIR0ClTJWAwwj/dX2UKGgGR0CW/4BgeA/caAdN6ANoCEdApVRhuAI6bXV9lChoBkdAnUGcbaRISWgHTegDaAhHQKVXjYChew91fZQoaAZHQJoSfFKkEcNoB03oA2gIR0ClV97tAs06dX2UKGgGR0CcdBt3fQ8faAdN6ANoCEdApVg22Zy+6HV9lChoBkdAmRFjgZTAFmgHTegDaAhHQKVfZqREF4d1fZQoaAZHQJmZwxQBPsRoB03oA2gIR0ClYl3umaYvdX2UKGgGR0CUZPxEORT1aAdN6ANoCEdApWKkqFyq/HV9lChoBkdAm36qISDh+GgHTegDaAhHQKVjD8aXKKZ1fZQoaAZHQJoDdC0F8ohoB03oA2gIR0ClaoO801qGdX2UKGgGR0CaTpyTY/VzaAdN6ANoCEdApW2XEXLvC3V9lChoBkdAl9zX+VC5VmgHTegDaAhHQKVt3RXwLE11fZQoaAZHQJ10RGz8gp1oB03oA2gIR0Clbi+gte2NdX2UKGgGR0CZo9L7GecyaAdN6ANoCEdApXVU9nscAHV9lChoBkdAmtJBKg7HQ2gHTegDaAhHQKV4OQ8OkLx1fZQoaAZHQJnUpR2r4nFoB03oA2gIR0CleI6P0Zm7dX2UKGgGR0Cd8sUB4lhPaAdN6ANoCEdApXj9J8OTaHV9lChoBkdAj4lJ40Mw12gHTegDaAhHQKWBYukDZDl1fZQoaAZHQJ2/ZkZrHlxoB03oA2gIR0ClhF+n62v0dX2UKGgGR0CdpFVD8cdYaAdN6ANoCEdApYSrrZ8KHHV9lChoBkdAm/Y+gL7XQWgHTegDaAhHQKWE+XmeUY91fZQoaAZHQJyss0waisZoB03oA2gIR0CljCPjOs1bdX2UKGgGR0CeNZp48lolaAdN6ANoCEdApY8V18stkHV9lChoBkdAnOaNMPBi1GgHTegDaAhHQKWPbXtjTa11fZQoaAZHQJw3fLZBcA1oB03oA2gIR0Clj7sM7U5NdX2UKGgGR0CfAqxVyWAxaAdN6ANoCEdApZdZ8hLXc3V9lChoBkdAmgRGl/H5rWgHTegDaAhHQKWaPXHzYmN1fZQoaAZHQJ6EkvHtF8ZoB03oA2gIR0Clmo/pUxVRdX2UKGgGR0CcqFOMVDa5aAdN6ANoCEdApZrgxFiKBXV9lChoBkdAnWiHJo0yg2gHTegDaAhHQKWhuGcnVoZ1fZQoaAZHQJzyOeyzHCJoB03oA2gIR0ClpMO/UONHdX2UKGgGR0CbZH++ueSTaAdN6ANoCEdApaUGryUcGXV9lChoBkdAnH4VpsXSB2gHTegDaAhHQKWlZ9Ujs2N1fZQoaAZHQJ0or4k/r0JoB03oA2gIR0ClrWQJPZZkdX2UKGgGR0CdoouW8h9taAdN6ANoCEdApbBvZqVQh3V9lChoBkdAnabAWepXIWgHTegDaAhHQKWwugX/HYJ1fZQoaAZHQJ3lb0Fr2xpoB03oA2gIR0ClsQ1pblijdX2UKGgGR0CeRS/QjUutaAdN6ANoCEdApbgu7+T/yXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ec866b7e61a3446ac02393e028938b098ee7bc76a48020f2f9ac32f32620eb
|
3 |
+
size 1111505
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1867.8036005528295, "std_reward": 131.99701608372288, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T21:40:00.937370"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23143671e119495c6c2bd5f5f926116ac46e006b69a4454cb3968a134f9e2d53
|
3 |
+
size 2521
|