--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-pretraining-2024_04_02-atelectasis-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7644320297951583 --- # vit-pretraining-2024_04_02-atelectasis-classifier This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5020 - Accuracy: 0.7644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6304 | 1.0 | 537 | 0.6342 | 0.6709 | | 0.5931 | 2.0 | 1074 | 0.5669 | 0.7207 | | 0.5027 | 3.0 | 1611 | 0.5397 | 0.7393 | | 0.5659 | 4.0 | 2148 | 0.5341 | 0.7458 | | 0.5115 | 5.0 | 2685 | 0.5433 | 0.7346 | | 0.5108 | 6.0 | 3222 | 0.5454 | 0.7309 | | 0.5187 | 7.0 | 3759 | 0.5136 | 0.7621 | | 0.4435 | 8.0 | 4296 | 0.5057 | 0.7677 | | 0.583 | 9.0 | 4833 | 0.5042 | 0.7584 | | 0.5256 | 10.0 | 5370 | 0.5249 | 0.7495 | | 0.4818 | 11.0 | 5907 | 0.5212 | 0.7481 | | 0.5575 | 12.0 | 6444 | 0.5061 | 0.7481 | | 0.3572 | 13.0 | 6981 | 0.5042 | 0.7602 | | 0.489 | 14.0 | 7518 | 0.5004 | 0.7709 | | 0.4773 | 15.0 | 8055 | 0.5074 | 0.7700 | | 0.4577 | 16.0 | 8592 | 0.5054 | 0.7677 | | 0.4619 | 17.0 | 9129 | 0.5021 | 0.7686 | | 0.3865 | 18.0 | 9666 | 0.5074 | 0.7644 | | 0.4889 | 19.0 | 10203 | 0.5113 | 0.7598 | | 0.4637 | 20.0 | 10740 | 0.5020 | 0.7644 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2