File size: 15,792 Bytes
3e21aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
bc80c18
 
 
3e21aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc80c18
 
3e21aa8
bc80c18
 
3e21aa8
bc80c18
 
3e21aa8
bc80c18
 
3e21aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc80c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e21aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
---
license: mit
tags:
- sentiment-analysis
- text-classification
- electra
- pytorch
- transformers
---

# ELECTRA Large Classifier for Sentiment Analysis

This is an [ELECTRA large discriminator](https://huggingface.co/google/electra-large-discriminator) fine-tuned for sentiment analysis of reviews. It has a mean pooling layer and a classifier head (2 layers of 1024 dimension) with SwishGLU activation and dropout (0.3). It classifies text into three sentiment categories: 'negative' (0), 'neutral' (1), and 'positive' (2). It was fine-tuned on the [Sentiment Merged](https://huggingface.co/datasets/jbeno/sentiment_merged) dataset, which is a merge of Stanford Sentiment Treebank (SST-3), and DynaSent Rounds 1 and 2.

## Updates

- **2025-Mar-25**: Uploaded a better performing model fine-tuned with a different random seed (123 vs. 42) and from an earlier training checkpoint (epoch 10 vs. 13).

## Labels

The model predicts the following labels:

- `0`: negative
- `1`: neutral
- `2`: positive

## How to Use

### Install package

This model requires the classes in `electra_classifier.py`. You can download the file, or you can install the package from PyPI.

```bash
pip install electra-classifier
```

### Load classes and model
```python
# Install the package in a notebook
import sys
!{sys.executable} -m pip install electra-classifier

# Import libraries
import torch
from transformers import AutoTokenizer
from electra_classifier import ElectraClassifier

# Load tokenizer and model
model_name = "jbeno/electra-large-classifier-sentiment"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = ElectraClassifier.from_pretrained(model_name)

# Set model to evaluation mode
model.eval()

# Run inference
text = "I love this restaurant!"
inputs = tokenizer(text, return_tensors="pt")

with torch.no_grad():
    logits = model(**inputs)
    predicted_class_id = torch.argmax(logits, dim=1).item()
    predicted_label = model.config.id2label[predicted_class_id]
    print(f"Predicted label: {predicted_label}")
```

## Requirements
- Python 3.7+
- PyTorch
- Transformers
- [electra-classifier](https://pypi.org/project/electra-classifier/) - Install with pip, or download electra_classifier.py

## Training Details

### Dataset

The model was trained on the [Sentiment Merged](https://huggingface.co/datasets/jbeno/sentiment_merged) dataset, which is a mix of Stanford Sentiment Treebank (SST-3), DynaSent Round 1, and DynaSent Round 2.

### Code

The code used to train the model can be found on GitHub:
- [jbeno/sentiment](https://github.com/jbeno/sentiment)
- [jbeno/electra-classifier](https://github.com/jbeno/electra-classifier)

### Research Paper

The research paper can be found here: [ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis](http://arxiv.org/abs/2501.00062) (arXiv:2501.00062)

### Performance Summary

- **Merged Dataset**
    - Macro Average F1: **83.16** (was 82.36)
    - Accuracy: **83.71** (was 82.96)
- **DynaSent R1**
    - Macro Average F1: **86.53** (was 85.91)
    - Accuracy: **86.44** (was 85.83)
- **DynaSent R2**
    - Macro Average F1: **78.36** (was 76.29)
    - Accuracy: **78.61** (was 76.53)
- **SST-3**
    - Macro Average F1: **72.63** (was 70.90)
    - Accuracy: **80.91** (was 80.36)

## Model Architecture

- **Base Model**: ELECTRA large discriminator (`google/electra-large-discriminator`)
- **Pooling Layer**: Custom pooling layer supporting 'cls', 'mean', and 'max' pooling types.
- **Classifier**: Custom classifier with configurable hidden dimensions, number of layers, and dropout rate.
    - **Activation Function**: Custom SwishGLU activation function.

```
ElectraClassifier(
  (electra): ElectraModel(
    (embeddings): ElectraEmbeddings(
      (word_embeddings): Embedding(30522, 1024, padding_idx=0)
      (position_embeddings): Embedding(512, 1024)
      (token_type_embeddings): Embedding(2, 1024)
      (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
      (dropout): Dropout(p=0.1, inplace=False)
    )
    (encoder): ElectraEncoder(
      (layer): ModuleList(
        (0-23): 24 x ElectraLayer(
          (attention): ElectraAttention(
            (self): ElectraSelfAttention(
              (query): Linear(in_features=1024, out_features=1024, bias=True)
              (key): Linear(in_features=1024, out_features=1024, bias=True)
              (value): Linear(in_features=1024, out_features=1024, bias=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
            (output): ElectraSelfOutput(
              (dense): Linear(in_features=1024, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (intermediate): ElectraIntermediate(
            (dense): Linear(in_features=1024, out_features=4096, bias=True)
            (intermediate_act_fn): GELUActivation()
          )
          (output): ElectraOutput(
            (dense): Linear(in_features=4096, out_features=1024, bias=True)
            (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
    )
  )
  (custom_pooling): PoolingLayer()
  (classifier): Classifier(
    (layers): Sequential(
      (0): Linear(in_features=1024, out_features=1024, bias=True)
      (1): SwishGLU(
        (projection): Linear(in_features=1024, out_features=2048, bias=True)
        (activation): SiLU()
      )
      (2): Dropout(p=0.3, inplace=False)
      (3): Linear(in_features=1024, out_features=1024, bias=True)
      (4): SwishGLU(
        (projection): Linear(in_features=1024, out_features=2048, bias=True)
        (activation): SiLU()
      )
      (5): Dropout(p=0.3, inplace=False)
      (6): Linear(in_features=1024, out_features=3, bias=True)
    )
  )
)
```

## Custom Model Components

### SwishGLU Activation Function

The SwishGLU activation function combines the Swish activation with a Gated Linear Unit (GLU). It enhances the model's ability to capture complex patterns in the data.

```python
class SwishGLU(nn.Module):
    def __init__(self, input_dim: int, output_dim: int):
        super(SwishGLU, self).__init__()
        self.projection = nn.Linear(input_dim, 2 * output_dim)
        self.activation = nn.SiLU()

    def forward(self, x):
        x_proj_gate = self.projection(x)
        projected, gate = x_proj_gate.tensor_split(2, dim=-1)
        return projected * self.activation(gate)
```

### PoolingLayer

The PoolingLayer class allows you to choose between different pooling strategies:

- `cls`: Uses the representation of the \[CLS\] token.
- `mean`: Calculates the mean of the token embeddings.
- `max`: Takes the maximum value across token embeddings.

**'mean'** pooling was used in the fine-tuned model.

```python
class PoolingLayer(nn.Module):
    def __init__(self, pooling_type='cls'):
        super().__init__()
        self.pooling_type = pooling_type

    def forward(self, last_hidden_state, attention_mask):
        if self.pooling_type == 'cls':
            return last_hidden_state[:, 0, :]
        elif self.pooling_type == 'mean':
            return (last_hidden_state * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1)
        elif self.pooling_type == 'max':
            return torch.max(last_hidden_state * attention_mask.unsqueeze(-1), dim=1)[0]
        else:
            raise ValueError(f"Unknown pooling method: {self.pooling_type}")
```

### Classifier

The Classifier class is a customizable feed-forward neural network used for the final classification.

The fine-tuned model had:

- `input_dim`: 1024
- `num_layers`: 2
- `hidden_dim`: 1024
- `hidden_activation`: SwishGLU
- `dropout_rate`: 0.3
- `n_classes`: 3

```python
class Classifier(nn.Module):
    def __init__(self, input_dim, hidden_dim, hidden_activation, num_layers, n_classes, dropout_rate=0.0):
        super().__init__()
        layers = []
        layers.append(nn.Linear(input_dim, hidden_dim))
        layers.append(hidden_activation)
        if dropout_rate > 0:
            layers.append(nn.Dropout(dropout_rate))

        for _ in range(num_layers - 1):
            layers.append(nn.Linear(hidden_dim, hidden_dim))
            layers.append(hidden_activation)
            if dropout_rate > 0:
                layers.append(nn.Dropout(dropout_rate))

        layers.append(nn.Linear(hidden_dim, n_classes))
        self.layers = nn.Sequential(*layers)
```

## Model Configuration

The model's configuration (config.json) includes custom parameters:

- `hidden_dim`: Size of the hidden layers in the classifier.
- `hidden_activation`: Activation function used in the classifier ('SwishGLU').
- `num_layers`: Number of layers in the classifier.
- `dropout_rate`: Dropout rate used in the classifier.
- `pooling`: Pooling strategy used ('mean').

## Updated Performance by Dataset

### Merged Dataset

```
Merged Dataset Classification Report

              precision    recall  f1-score   support

    negative   0.874178  0.847789  0.860781      2352
     neutral   0.741715  0.770913  0.756032      1829
    positive   0.878194  0.877820  0.878007      2349

    accuracy                       0.837060      6530
   macro avg   0.831362  0.832174  0.831607      6530
weighted avg   0.838521  0.837060  0.837639      6530

ROC AUC: 0.947808

Predicted  negative  neutral  positive
Actual                                
negative       1994      268        90
neutral         223     1410       196
positive         64      223      2062

Macro F1 Score: 0.83
```

### DynaSent Round 1

```
DynaSent Round 1 Classification Report

              precision    recall  f1-score   support

    negative   0.925512  0.828333  0.874230      1200
     neutral   0.781536  0.924167  0.846888      1200
    positive   0.911472  0.840833  0.874729      1200

    accuracy                       0.864444      3600
   macro avg   0.872840  0.864444  0.865283      3600
weighted avg   0.872840  0.864444  0.865283      3600

ROC AUC: 0.962647

Predicted  negative  neutral  positive
Actual                                
negative        994      159        47
neutral          40     1109        51
positive         40      151      1009

Macro F1 Score: 0.87
```

### DynaSent Round 2

```
DynaSent Round 2 Classification Report

              precision    recall  f1-score   support

    negative   0.791339  0.837500  0.813765       240
     neutral   0.803030  0.662500  0.726027       240
    positive   0.768657  0.858333  0.811024       240

    accuracy                       0.786111       720
   macro avg   0.787675  0.786111  0.783605       720
weighted avg   0.787675  0.786111  0.783605       720

ROC AUC: 0.932089

Predicted  negative  neutral  positive
Actual                                
negative        201       18        21
neutral          40      159        41
positive         13       21       206

Macro F1 Score: 0.78
```

### Stanford Sentiment Treebank (SST-3)

```
SST-3 Classification Report

              precision    recall  f1-score   support

    negative   0.838405  0.876096  0.856836       912
     neutral   0.500000  0.365039  0.421991       389
    positive   0.870504  0.931793  0.900106       909

    accuracy                       0.809050      2210
   macro avg   0.736303  0.724309  0.726311      2210
weighted avg   0.792042  0.809050  0.798093      2210

ROC AUC: 0.905255

Predicted  negative  neutral  positive
Actual                                
negative        799       91        22
neutral         143      142       104
positive         11       51       847

Macro F1 Score: 0.73
```

## Old Performance by Dataset

### Merged Dataset

```
Merged Dataset Classification Report

              precision    recall  f1-score   support

    negative   0.858503  0.843537  0.850954      2352
     neutral   0.747684  0.750137  0.748908      1829
    positive   0.864513  0.877395  0.870906      2349

    accuracy                       0.829556      6530
   macro avg   0.823567  0.823690  0.823590      6530
weighted avg   0.829626  0.829556  0.829549      6530

ROC AUC: 0.947247

Predicted  negative  neutral  positive
Actual                                
negative       1984      256       112
neutral         246     1372       211
positive         81      207      2061

Macro F1 Score: 0.82
```

### DynaSent Round 1

```
DynaSent Round 1 Classification Report

              precision    recall  f1-score   support

    negative   0.913204  0.824167  0.866404      1200
     neutral   0.779433  0.915833  0.842146      1200
    positive   0.905149  0.835000  0.868661      1200

    accuracy                       0.858333      3600
   macro avg   0.865929  0.858333  0.859070      3600
weighted avg   0.865929  0.858333  0.859070      3600

ROC AUC: 0.963133

Predicted  negative  neutral  positive
Actual                                
negative        989      156        55
neutral          51     1099        50
positive         43      155      1002

Macro F1 Score: 0.86
```

### DynaSent Round 2

```
DynaSent Round 2 Classification Report

              precision    recall  f1-score   support

    negative   0.764706  0.812500  0.787879       240
     neutral   0.814815  0.641667  0.717949       240
    positive   0.731884  0.841667  0.782946       240

    accuracy                       0.765278       720
   macro avg   0.770468  0.765278  0.762924       720
weighted avg   0.770468  0.765278  0.762924       720

ROC AUC: 0.927688

Predicted  negative  neutral  positive
Actual                                
negative        195       19        26
neutral          38      154        48
positive         22       16       202

Macro F1 Score: 0.76
```

### Stanford Sentiment Treebank (SST-3)

```
SST-3 Classification Report

              precision    recall  f1-score   support

    negative   0.822199  0.877193  0.848806       912
     neutral   0.504237  0.305913  0.380800       389
    positive   0.856144  0.942794  0.897382       909

    accuracy                       0.803620      2210
   macro avg   0.727527  0.708633  0.708996      2210
weighted avg   0.780194  0.803620  0.786409      2210

ROC AUC: 0.904787

Predicted  negative  neutral  positive
Actual                                
negative        800       81        31
neutral         157      119       113
positive         16       36       857

Macro F1 Score: 0.71
```

## License

This model is licensed under the MIT License.

## Citation

If you use this model in your work, please cite:

```bibtex
@article{beno-2024-electragpt,
      title={ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis}, 
      author={James P. Beno},
      journal={arXiv preprint arXiv:2501.00062},
      year={2024},
      eprint={2501.00062},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.00062}, 
}
```

## Contact

For questions or comments, please open an issue on the repository or contact [Jim Beno](https://huggingface.co/jbeno).

## Acknowledgments

- The [Hugging Face Transformers library](https://github.com/huggingface/transformers) for providing powerful tools for model development.
- The creators of the [ELECTRA model](https://arxiv.org/abs/2003.10555) for their foundational work.
- The authors of the datasets used: [Stanford Sentiment Treebank](https://huggingface.co/datasets/stanfordnlp/sst), [DynaSent](https://huggingface.co/datasets/dynabench/dynasent).
- [Stanford Engineering CGOE](https://cgoe.stanford.edu), [Chris Potts](https://stanford.edu/~cgpotts/), and the Course Facilitators of [XCS224U](https://online.stanford.edu/courses/xcs224u-natural-language-understanding)