--- license: mit tags: - sentiment-analysis - text-classification - electra - pytorch - transformers --- # ELECTRA Large Classifier for Sentiment Analysis This is an [ELECTRA large discriminator](https://huggingface.co/google/electra-large-discriminator) fine-tuned for sentiment analysis of reviews. It has a mean pooling layer and a classifier head (2 layers of 1024 dimension) with SwishGLU activation and dropout (0.3). It classifies text into three sentiment categories: 'negative' (0), 'neutral' (1), and 'positive' (2). It was fine-tuned on the [Sentiment Merged](https://huggingface.co/datasets/jbeno/sentiment_merged) dataset, which is a merge of Stanford Sentiment Treebank (SST-3), and DynaSent Rounds 1 and 2. ## Labels The model predicts the following labels: - `0`: negative - `1`: neutral - `2`: positive ## How to Use ### Install package This model requires the classes in `electra_classifier.py`. You can download the file, or you can install the package from PyPI. ```bash pip install electra-classifier ``` ### Load classes and model ```python # Install the package in a notebook import sys !{sys.executable} -m pip install electra-classifier # Import libraries import torch from transformers import AutoTokenizer from electra_classifier import ElectraClassifier # Load tokenizer and model model_name = "jbeno/electra-large-classifier-sentiment" tokenizer = AutoTokenizer.from_pretrained(model_name) model = ElectraClassifier.from_pretrained(model_name) # Set model to evaluation mode model.eval() # Run inference text = "I love this restaurant!" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): logits = model(**inputs) predicted_class_id = torch.argmax(logits, dim=1).item() predicted_label = model.config.id2label[predicted_class_id] print(f"Predicted label: {predicted_label}") ``` ## Requirements - Python 3.7+ - PyTorch - Transformers - [electra-classifier](https://pypi.org/project/electra-classifier/) - Install with pip, or download electra_classifier.py ## Training Details ### Dataset The model was trained on the [Sentiment Merged](https://huggingface.co/datasets/jbeno/sentiment_merged) dataset, which is a mix of Stanford Sentiment Treebank (SST-3), DynaSent Round 1, and DynaSent Round 2. ### Code The code used to train the model can be found on GitHub: - [jbeno/sentiment](https://github.com/jbeno/sentiment) - [jbeno/electra-classifier](https://github.com/jbeno/electra-classifier) ### Research Paper The research paper can be found here: [ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis](http://arxiv.org/abs/2501.00062) (arXiv:2501.00062) ### Performance Summary - **Merged Dataset** - Macro Average F1: **82.36** - Accuracy: **82.96** - **DynaSent R1** - Macro Average F1: **85.91** - Accuracy: **85.83** - **DynaSent R2** - Macro Average F1: **76.29** - Accuracy: **76.53** - **SST-3** - Macro Average F1: **70.90** - Accuracy: **80.36** ## Model Architecture - **Base Model**: ELECTRA large discriminator (`google/electra-large-discriminator`) - **Pooling Layer**: Custom pooling layer supporting 'cls', 'mean', and 'max' pooling types. - **Classifier**: Custom classifier with configurable hidden dimensions, number of layers, and dropout rate. - **Activation Function**: Custom SwishGLU activation function. ``` ElectraClassifier( (electra): ElectraModel( (embeddings): ElectraEmbeddings( (word_embeddings): Embedding(30522, 1024, padding_idx=0) (position_embeddings): Embedding(512, 1024) (token_type_embeddings): Embedding(2, 1024) (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): ElectraEncoder( (layer): ModuleList( (0-23): 24 x ElectraLayer( (attention): ElectraAttention( (self): ElectraSelfAttention( (query): Linear(in_features=1024, out_features=1024, bias=True) (key): Linear(in_features=1024, out_features=1024, bias=True) (value): Linear(in_features=1024, out_features=1024, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): ElectraSelfOutput( (dense): Linear(in_features=1024, out_features=1024, bias=True) (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): ElectraIntermediate( (dense): Linear(in_features=1024, out_features=4096, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ElectraOutput( (dense): Linear(in_features=4096, out_features=1024, bias=True) (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) ) (custom_pooling): PoolingLayer() (classifier): Classifier( (layers): Sequential( (0): Linear(in_features=1024, out_features=1024, bias=True) (1): SwishGLU( (projection): Linear(in_features=1024, out_features=2048, bias=True) (activation): SiLU() ) (2): Dropout(p=0.3, inplace=False) (3): Linear(in_features=1024, out_features=1024, bias=True) (4): SwishGLU( (projection): Linear(in_features=1024, out_features=2048, bias=True) (activation): SiLU() ) (5): Dropout(p=0.3, inplace=False) (6): Linear(in_features=1024, out_features=3, bias=True) ) ) ) ``` ## Custom Model Components ### SwishGLU Activation Function The SwishGLU activation function combines the Swish activation with a Gated Linear Unit (GLU). It enhances the model's ability to capture complex patterns in the data. ```python class SwishGLU(nn.Module): def __init__(self, input_dim: int, output_dim: int): super(SwishGLU, self).__init__() self.projection = nn.Linear(input_dim, 2 * output_dim) self.activation = nn.SiLU() def forward(self, x): x_proj_gate = self.projection(x) projected, gate = x_proj_gate.tensor_split(2, dim=-1) return projected * self.activation(gate) ``` ### PoolingLayer The PoolingLayer class allows you to choose between different pooling strategies: - `cls`: Uses the representation of the \[CLS\] token. - `mean`: Calculates the mean of the token embeddings. - `max`: Takes the maximum value across token embeddings. **'mean'** pooling was used in the fine-tuned model. ```python class PoolingLayer(nn.Module): def __init__(self, pooling_type='cls'): super().__init__() self.pooling_type = pooling_type def forward(self, last_hidden_state, attention_mask): if self.pooling_type == 'cls': return last_hidden_state[:, 0, :] elif self.pooling_type == 'mean': return (last_hidden_state * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1) elif self.pooling_type == 'max': return torch.max(last_hidden_state * attention_mask.unsqueeze(-1), dim=1)[0] else: raise ValueError(f"Unknown pooling method: {self.pooling_type}") ``` ### Classifier The Classifier class is a customizable feed-forward neural network used for the final classification. The fine-tuned model had: - `input_dim`: 1024 - `num_layers`: 2 - `hidden_dim`: 1024 - `hidden_activation`: SwishGLU - `dropout_rate`: 0.3 - `n_classes`: 3 ```python class Classifier(nn.Module): def __init__(self, input_dim, hidden_dim, hidden_activation, num_layers, n_classes, dropout_rate=0.0): super().__init__() layers = [] layers.append(nn.Linear(input_dim, hidden_dim)) layers.append(hidden_activation) if dropout_rate > 0: layers.append(nn.Dropout(dropout_rate)) for _ in range(num_layers - 1): layers.append(nn.Linear(hidden_dim, hidden_dim)) layers.append(hidden_activation) if dropout_rate > 0: layers.append(nn.Dropout(dropout_rate)) layers.append(nn.Linear(hidden_dim, n_classes)) self.layers = nn.Sequential(*layers) ``` ## Model Configuration The model's configuration (config.json) includes custom parameters: - `hidden_dim`: Size of the hidden layers in the classifier. - `hidden_activation`: Activation function used in the classifier ('SwishGLU'). - `num_layers`: Number of layers in the classifier. - `dropout_rate`: Dropout rate used in the classifier. - `pooling`: Pooling strategy used ('mean'). ## Performance by Dataset ### Merged Dataset ``` Merged Dataset Classification Report precision recall f1-score support negative 0.858503 0.843537 0.850954 2352 neutral 0.747684 0.750137 0.748908 1829 positive 0.864513 0.877395 0.870906 2349 accuracy 0.829556 6530 macro avg 0.823567 0.823690 0.823590 6530 weighted avg 0.829626 0.829556 0.829549 6530 ROC AUC: 0.947247 Predicted negative neutral positive Actual negative 1984 256 112 neutral 246 1372 211 positive 81 207 2061 Macro F1 Score: 0.82 ``` ### DynaSent Round 1 ``` DynaSent Round 1 Classification Report precision recall f1-score support negative 0.913204 0.824167 0.866404 1200 neutral 0.779433 0.915833 0.842146 1200 positive 0.905149 0.835000 0.868661 1200 accuracy 0.858333 3600 macro avg 0.865929 0.858333 0.859070 3600 weighted avg 0.865929 0.858333 0.859070 3600 ROC AUC: 0.963133 Predicted negative neutral positive Actual negative 989 156 55 neutral 51 1099 50 positive 43 155 1002 Macro F1 Score: 0.86 ``` ### DynaSent Round 2 ``` DynaSent Round 2 Classification Report precision recall f1-score support negative 0.764706 0.812500 0.787879 240 neutral 0.814815 0.641667 0.717949 240 positive 0.731884 0.841667 0.782946 240 accuracy 0.765278 720 macro avg 0.770468 0.765278 0.762924 720 weighted avg 0.770468 0.765278 0.762924 720 ROC AUC: 0.927688 Predicted negative neutral positive Actual negative 195 19 26 neutral 38 154 48 positive 22 16 202 Macro F1 Score: 0.76 ``` ### Stanford Sentiment Treebank (SST-3) ``` SST-3 Classification Report precision recall f1-score support negative 0.822199 0.877193 0.848806 912 neutral 0.504237 0.305913 0.380800 389 positive 0.856144 0.942794 0.897382 909 accuracy 0.803620 2210 macro avg 0.727527 0.708633 0.708996 2210 weighted avg 0.780194 0.803620 0.786409 2210 ROC AUC: 0.904787 Predicted negative neutral positive Actual negative 800 81 31 neutral 157 119 113 positive 16 36 857 Macro F1 Score: 0.71 ``` ## License This model is licensed under the MIT License. ## Citation If you use this model in your work, please cite: ```bibtex @article{beno-2024-electragpt, title={ELECTRA and GPT-4o: Cost-Effective Partners for Sentiment Analysis}, author={James P. Beno}, journal={arXiv preprint arXiv:2501.00062}, year={2024}, eprint={2501.00062}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.00062}, } ``` ## Contact For questions or comments, please open an issue on the repository or contact [Jim Beno](https://huggingface.co/jbeno). ## Acknowledgments - The [Hugging Face Transformers library](https://github.com/huggingface/transformers) for providing powerful tools for model development. - The creators of the [ELECTRA model](https://arxiv.org/abs/2003.10555) for their foundational work. - The authors of the datasets used: [Stanford Sentiment Treebank](https://huggingface.co/datasets/stanfordnlp/sst), [DynaSent](https://huggingface.co/datasets/dynabench/dynasent). - [Stanford Engineering CGOE](https://cgoe.stanford.edu), [Chris Potts](https://stanford.edu/~cgpotts/), and the Course Facilitators of [XCS224U](https://online.stanford.edu/courses/xcs224u-natural-language-understanding)