HunyuanVideoGP-HFIE / handler.py
jbilcke-hf's picture
jbilcke-hf HF staff
Update handler.py
6752edd verified
from typing import Dict, Any
import os
import shutil
import gc
import time
from pathlib import Path
import argparse
from datetime import datetime
from loguru import logger
import torch
import base64
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT, VAE_PATH, TEXT_ENCODER_PATH, TOKENIZER_PATH
try:
import triton
has_triton = True
except ImportError:
has_triton = False
try:
from mmgp import offload, safetensors2, profile_type
has_mmgp = True
except ImportError:
has_mmgp = False
# Configure logger
logger.add("handler_debug.log", rotation="500 MB")
DEFAULT_RESOLUTION = "720p"
DEFAULT_WIDTH = 1280
DEFAULT_HEIGHT = 720
DEFAULT_NB_FRAMES = (4 * 30) + 1 # or 129 (note: hunyan requires an extra +1 frame)
DEFAULT_NB_STEPS = 22 # Default for standard model
DEFAULT_FPS = 24
def get_attention_modes():
"""Get available attention modes - fallback if module function isn't available"""
modes = ["sdpa"] # Always available
try:
import torch
if hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
modes.append("sdpa")
except:
pass
try:
import flash_attn
modes.append("flash")
except:
pass
try:
import sageattention
modes.append("sage")
if hasattr(sageattention, 'efficient_attention_v2'):
modes.append("sage2")
except:
pass
try:
import xformers
modes.append("xformers")
except:
pass
return modes
# Get supported attention modes
try:
from hyvideo.modules.attenion import get_attention_modes
attention_modes_supported = get_attention_modes()
except:
attention_modes_supported = get_attention_modes()
def setup_vae_path(vae_path: Path) -> Path:
"""Create a temporary directory with correctly named VAE config file"""
tmp_vae_dir = Path("/tmp/vae")
if tmp_vae_dir.exists():
shutil.rmtree(tmp_vae_dir)
tmp_vae_dir.mkdir(parents=True)
# Copy files to temp directory
logger.info(f"Setting up VAE in temporary directory: {tmp_vae_dir}")
# Copy and rename config file
original_config = vae_path / "hunyuan-video-t2v-720p_vae_config.json"
new_config = tmp_vae_dir / "config.json"
shutil.copy2(original_config, new_config)
logger.info(f"Copied VAE config from {original_config} to {new_config}")
# Copy model file
original_model = vae_path / "pytorch_model.pt"
new_model = tmp_vae_dir / "pytorch_model.pt"
shutil.copy2(original_model, new_model)
logger.info(f"Copied VAE model from {original_model} to {new_model}")
return tmp_vae_dir
def get_default_args():
"""Create default arguments instead of parsing from command line"""
parser = argparse.ArgumentParser()
# Model configuration
parser.add_argument("--model", type=str, default="HYVideo-T/2-cfgdistill")
parser.add_argument("--model-resolution", type=str, default=DEFAULT_RESOLUTION, choices=["540p", "720p"])
parser.add_argument("--latent-channels", type=int, default=16)
parser.add_argument("--precision", type=str, default="bf16", choices=["bf16", "fp32", "fp16"])
parser.add_argument("--rope-theta", type=int, default=256)
parser.add_argument("--load-key", type=str, default="module")
parser.add_argument("--use-fp8", action="store_true", default=False)
# VAE settings
parser.add_argument("--vae", type=str, default="884-16c-hy")
parser.add_argument("--vae-precision", type=str, default="fp16")
parser.add_argument("--vae-tiling", action="store_true", default=True)
# Text encoder settings
parser.add_argument("--text-encoder", type=str, default="llm")
parser.add_argument("--text-encoder-precision", type=str, default="fp16")
parser.add_argument("--text-states-dim", type=int, default=4096)
parser.add_argument("--text-len", type=int, default=256)
parser.add_argument("--tokenizer", type=str, default="llm")
# Prompt template settings
parser.add_argument("--prompt-template", type=str, default="dit-llm-encode")
parser.add_argument("--prompt-template-video", type=str, default="dit-llm-encode-video")
# Additional text encoder settings
parser.add_argument("--hidden-state-skip-layer", type=int, default=2)
parser.add_argument("--apply-final-norm", action="store_true")
parser.add_argument("--text-encoder-2", type=str, default="clipL")
parser.add_argument("--text-encoder-precision-2", type=str, default="fp16")
parser.add_argument("--text-states-dim-2", type=int, default=768)
parser.add_argument("--tokenizer-2", type=str, default="clipL")
parser.add_argument("--text-len-2", type=int, default=77)
# Model architecture settings
parser.add_argument("--hidden-size", type=int, default=1024)
parser.add_argument("--heads-num", type=int, default=16)
parser.add_argument("--layers-num", type=int, default=24)
parser.add_argument("--mlp-ratio", type=float, default=4.0)
parser.add_argument("--use-guidance-net", action="store_true", default=True)
# Inference settings
parser.add_argument("--denoise-type", type=str, default="flow")
parser.add_argument("--flow-shift", type=float, default=7.0)
parser.add_argument("--flow-reverse", action="store_true", default=True)
parser.add_argument("--flow-solver", type=str, default="euler")
parser.add_argument("--use-linear-quadratic-schedule", action="store_true")
parser.add_argument("--linear-schedule-end", type=int, default=25)
# Hardware settings
parser.add_argument("--use-cpu-offload", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=1)
parser.add_argument("--infer-steps", type=int, default=DEFAULT_NB_STEPS)
parser.add_argument("--disable-autocast", action="store_true")
# Output settings
parser.add_argument("--save-path", type=str, default="outputs")
parser.add_argument("--save-path-suffix", type=str, default="")
parser.add_argument("--name-suffix", type=str, default="")
# Generation settings
parser.add_argument("--num-videos", type=int, default=1)
parser.add_argument("--video-size", nargs="+", type=int, default=[DEFAULT_HEIGHT, DEFAULT_WIDTH])
parser.add_argument("--video-length", type=int, default=DEFAULT_NB_FRAMES)
parser.add_argument("--prompt", type=str, default=None)
parser.add_argument("--seed-type", type=str, default="auto", choices=["file", "random", "fixed", "auto"])
parser.add_argument("--seed", type=int, default=None)
parser.add_argument("--neg-prompt", type=str, default="")
parser.add_argument("--cfg-scale", type=float, default=1.0)
parser.add_argument("--embedded-cfg-scale", type=float, default=6.0)
parser.add_argument("--reproduce", action="store_true")
# Parallel settings
parser.add_argument("--ulysses-degree", type=int, default=1)
parser.add_argument("--ring-degree", type=int, default=1)
# Added from gradio server
parser.add_argument("--attention", type=str, default="auto",
choices=["auto", "sdpa", "flash", "sage", "sage2", "xformers"])
parser.add_argument("--profile", type=int, default=1) # HighRAM_HighVRAM
parser.add_argument("--quantize-transformer", action="store_true", default=False)
parser.add_argument("--tea-cache", type=float, default=0.0)
parser.add_argument("--compile", action="store_true", default=False)
parser.add_argument("--enable-riflex", action="store_true", default=True)
parser.add_argument("--vae-config", type=int, default=0)
# Parse with empty args list to avoid reading sys.argv
args = parser.parse_args([])
return args
def get_auto_attention():
"""Select the best available attention mode"""
for attn in ["sage2", "sage", "sdpa"]:
if attn in attention_modes_supported:
return attn
return "sdpa"
def setup_vae_config(device_mem_capacity, vae, vae_config=0):
"""Configure VAE tiling based on available VRAM"""
if vae_config == 0:
# Auto-select based on VRAM
if device_mem_capacity >= 24000:
use_vae_config = 1
elif device_mem_capacity >= 16000:
use_vae_config = 3
elif device_mem_capacity >= 12000:
use_vae_config = 4
else:
use_vae_config = 5
else:
use_vae_config = vae_config
# VAE tiling configuration options
if use_vae_config == 1:
sample_tsize = 32
sample_size = 256
elif use_vae_config == 2:
sample_tsize = 64
sample_size = 192
elif use_vae_config == 3:
sample_tsize = 32
sample_size = 192
elif use_vae_config == 4:
sample_tsize = 16
sample_size = 256
else:
sample_tsize = 16
sample_size = 192
# Apply settings
vae.tile_sample_min_tsize = sample_tsize
vae.tile_latent_min_tsize = sample_tsize // vae.time_compression_ratio
vae.tile_sample_min_size = sample_size
vae.tile_latent_min_size = int(sample_size / (2 ** (len(vae.config.block_out_channels) - 1)))
vae.tile_overlap_factor = 0.25
return use_vae_config
class EndpointHandler:
def __init__(self, path: str = ""):
"""Initialize the handler with model path and config."""
logger.info(f"Initializing EndpointHandler with path: {path}")
# Use default args instead of parsing from command line
self.args = get_default_args()
# Convert path to absolute path if not already
path = str(Path(path).absolute())
logger.info(f"Absolute path: {path}")
# Set up model paths
self.args.model_base = path
# Model configurations
self.init_model_paths(path)
self.configure_model()
# Initialize model
self.initialize_model()
def init_model_paths(self, path):
"""Setup paths for model components"""
# We'll use the FP8 model for memory efficiency
self.args.use_fp8 = True
# Model component paths
dit_weight_path = Path(path) / "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt"
original_vae_path = Path(path) / "hunyuan-video-t2v-720p/vae"
# Log all critical paths
logger.info(f"Model base path: {self.args.model_base}")
logger.info(f"DiT weight path: {dit_weight_path}")
logger.info(f"Use fp8: {self.args.use_fp8}")
logger.info(f"Original VAE path: {original_vae_path}")
# Verify paths exist
logger.info("Checking if paths exist:")
logger.info(f"DiT weight exists: {dit_weight_path.exists()}")
logger.info(f"VAE path exists: {original_vae_path.exists()}")
if original_vae_path.exists():
logger.info(f"VAE path contents: {list(original_vae_path.glob('*'))}")
# Set up VAE in temporary directory with correct file names
tmp_vae_path = setup_vae_path(original_vae_path)
# Override the VAE path in constants to use our temporary directory
VAE_PATH["884-16c-hy"] = str(tmp_vae_path)
logger.info(f"Updated VAE_PATH to: {VAE_PATH['884-16c-hy']}")
# Update text encoder paths to use absolute paths
text_encoder_path = str(Path(path) / "text_encoder")
text_encoder_2_path = str(Path(path) / "text_encoder_2")
# Update both text encoder and tokenizer paths
TEXT_ENCODER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
TOKENIZER_PATH.update({
"llm": text_encoder_path,
"clipL": text_encoder_2_path
})
logger.info(f"Updated text encoder paths:")
logger.info(f"TEXT_ENCODER_PATH['llm']: {TEXT_ENCODER_PATH['llm']}")
logger.info(f"TEXT_ENCODER_PATH['clipL']: {TEXT_ENCODER_PATH['clipL']}")
logger.info(f"TOKENIZER_PATH['llm']: {TOKENIZER_PATH['llm']}")
logger.info(f"TOKENIZER_PATH['clipL']: {TOKENIZER_PATH['clipL']}")
self.args.dit_weight = str(dit_weight_path)
def configure_model(self):
"""Configure model based on available hardware and settings"""
# Set attention mode (auto-select best available if set to 'auto')
if self.args.attention == "auto":
self.attention_mode = get_auto_attention()
elif self.args.attention in attention_modes_supported:
self.attention_mode = self.args.attention
else:
logger.warning(f"Attention mode {self.args.attention} not supported. Falling back to sdpa.")
self.attention_mode = "sdpa"
logger.info(f"Using attention mode: {self.attention_mode}")
# Set compilation flag based on Triton availability
if self.args.compile and not has_triton:
logger.warning("Compilation requested but Triton not available. Compilation disabled.")
self.args.compile = False
# Set profile based on memory configuration
# We default to HighRAM_HighVRAM (1) as specified
if has_mmgp:
self.profile = self.args.profile
logger.info(f"Using memory profile: {self.profile}")
else:
logger.warning("MMGP not available. Memory profiles not used.")
def initialize_model(self):
"""Initialize the model with configured settings"""
models_root_path = Path(self.args.model_base)
if not models_root_path.exists():
raise ValueError(f"models_root_path does not exist: {models_root_path}")
try:
logger.info("Attempting to initialize HunyuanVideoSampler...")
# Extract necessary paths
transformer_path = str(self.args.dit_weight)
text_encoder_path = str(Path(self.args.model_base) / "text_encoder")
logger.info(f"Transformer path: {transformer_path}")
logger.info(f"Text encoder path: {text_encoder_path}")
# Initialize the model using the exact signature from gradio_server.py
self.model = HunyuanVideoSampler.from_pretrained(
transformer_path,
text_encoder_path,
attention_mode=self.attention_mode,
args=self.args
)
# Set attention mode for transformer blocks
if hasattr(self.model, 'pipeline') and hasattr(self.model.pipeline, 'transformer'):
transformer = self.model.pipeline.transformer
transformer.attention_mode = self.attention_mode
# Apply to all blocks
if hasattr(transformer, 'double_blocks'):
for module in transformer.double_blocks:
module.attention_mode = self.attention_mode
if hasattr(transformer, 'single_blocks'):
for module in transformer.single_blocks:
module.attention_mode = self.attention_mode
# Enable compilation if requested
if self.args.compile:
transformer.any_compilation = True
logger.info("PyTorch compilation enabled for transformer")
# Enable TeaCache if requested
if self.args.tea_cache > 0:
transformer.enable_teacache = True
transformer.rel_l1_thresh = self.args.tea_cache
logger.info(f"TeaCache enabled with threshold: {self.args.tea_cache}")
else:
transformer.enable_teacache = False
# Apply VAE tiling configuration if supported
if hasattr(self.model, 'vae'):
if torch.cuda.is_available():
device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
vae_config = setup_vae_config(device_mem_capacity, self.model.vae, self.args.vae_config)
logger.info(f"Configured VAE tiling with config: {vae_config}")
else:
logger.warning("CUDA not available, using default VAE configuration")
logger.info("Successfully initialized HunyuanVideoSampler")
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
raise
def __call__(self, data: Dict[str, Any]) -> str:
"""Process a single request"""
# Log incoming request
logger.info(f"Processing request with data: {data}")
# Get inputs from request data
prompt = data.pop("inputs", None)
if prompt is None:
raise ValueError("No prompt provided in the 'inputs' field")
# Parse resolution
resolution = data.pop("resolution", f"{DEFAULT_WIDTH}x{DEFAULT_HEIGHT}")
width, height = map(int, resolution.split("x"))
# Get other parameters with defaults
video_length = int(data.pop("video_length", DEFAULT_NB_FRAMES))
seed = data.pop("seed", -1)
seed = None if seed == -1 else int(seed)
num_inference_steps = int(data.pop("num_inference_steps", DEFAULT_NB_STEPS))
guidance_scale = float(data.pop("guidance_scale", 1.0))
flow_shift = float(data.pop("flow_shift", 7.0))
embedded_guidance_scale = float(data.pop("embedded_guidance_scale", 6.0))
enable_riflex = data.pop("enable_riflex", self.args.enable_riflex)
tea_cache = float(data.pop("tea_cache", 0.0))
logger.info(f"Processing with parameters: width={width}, height={height}, "
f"video_length={video_length}, seed={seed}, "
f"num_inference_steps={num_inference_steps}")
try:
# Set up TeaCache for this generation if enabled
if hasattr(self.model.pipeline, 'transformer') and tea_cache > 0:
transformer = self.model.pipeline.transformer
transformer.enable_teacache = True
transformer.num_steps = num_inference_steps
transformer.cnt = 0
transformer.rel_l1_thresh = tea_cache
transformer.accumulated_rel_l1_distance = 0
transformer.previous_modulated_input = None
transformer.previous_residual = None
# Clean up memory before generation
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Run inference
outputs = self.model.predict(
prompt=prompt,
height=height,
width=width,
video_length=video_length,
seed=seed,
negative_prompt="",
infer_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_videos_per_prompt=1,
flow_shift=flow_shift,
batch_size=1,
embedded_guidance_scale=embedded_guidance_scale,
enable_riflex=enable_riflex
)
# Get the video tensor
samples = outputs['samples']
sample = samples[0].unsqueeze(0)
# Save to temporary file
temp_path = "/tmp/temp_video.mp4"
save_videos_grid(sample, temp_path, fps=DEFAULT_FPS)
# Read video file and convert to base64
with open(temp_path, "rb") as f:
video_bytes = f.read()
video_base64 = base64.b64encode(video_bytes).decode()
# Add MP4 data URI prefix
video_data_uri = f"data:video/mp4;base64,{video_base64}"
# Cleanup
os.remove(temp_path)
# Clean up memory after generation
if has_mmgp and hasattr(offload, 'last_offload_obj'):
offload.last_offload_obj.unload_all()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("Successfully generated and encoded video")
# Return exactly what the demo.py expects
return video_data_uri
except Exception as e:
logger.error(f"Error during video generation: {str(e)}")
# Clean up memory after error
if has_mmgp and hasattr(offload, 'last_offload_obj'):
offload.last_offload_obj.unload_all()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise