File size: 9,600 Bytes
be2df75 132e8c4 be2df75 b5d7f4c a5265d3 6789b6e 1a6f91c be2df75 2fa2e84 e349e43 132e8c4 be2df75 85f39ae 132e8c4 be2df75 d35cde0 be2df75 132e8c4 be2df75 132e8c4 be2df75 d35cde0 be2df75 132e8c4 be2df75 132e8c4 be2df75 132e8c4 be2df75 ef15707 6789b6e be2df75 f6dd4f3 6789b6e f6dd4f3 be2df75 ef15707 be2df75 ef15707 be2df75 ef15707 f6dd4f3 be2df75 f6dd4f3 1a6f91c be2df75 f6dd4f3 1a6f91c be2df75 f6dd4f3 be2df75 f6dd4f3 be2df75 132e8c4 be2df75 132e8c4 be2df75 132e8c4 be2df75 132e8c4 be2df75 132e8c4 d35cde0 132e8c4 be2df75 e349e43 132e8c4 1a6f91c be2df75 b5d7f4c be2df75 ef15707 be2df75 b5d7f4c ef15707 be2df75 ef15707 1a6f91c be2df75 29cace5 1a6f91c ef15707 f6dd4f3 1a6f91c f6dd4f3 0d0a1bc 132e8c4 be2df75 6941871 be2df75 6941871 be2df75 b97329f a5265d3 be2df75 d35cde0 1a6f91c be2df75 f6dd4f3 1a6f91c 132e8c4 a5265d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Any, Optional, Tuple
import asyncio
import base64
import io
import logging
import random
import traceback
import os
import numpy as np
import torch
from diffusers import LTXPipeline, LTXImageToVideoPipeline
from PIL import Image
from varnish import Varnish
from varnish.debug_utils import setup_debug_logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constraints
MAX_WIDTH = 1280
MAX_HEIGHT = 720
MAX_FRAMES = 257
@dataclass
class GenerationConfig:
"""Configuration for video generation"""
width: int = 768
height: int = 512
fps: int = 24
duration_sec: float = 4.0
num_inference_steps: int = 30
guidance_scale: float = 7.5
upscale_factor: float = 2.0
enable_interpolation: bool = False
seed: int = -1 # -1 means random seed
@property
def num_frames(self) -> int:
"""Calculate number of frames based on fps and duration"""
return int(self.duration_sec * self.fps) + 1
def validate_and_adjust(self) -> 'GenerationConfig':
"""Validate and adjust parameters to meet constraints"""
# Round dimensions to nearest multiple of 32
self.width = max(32, min(MAX_WIDTH, round(self.width / 32) * 32))
self.height = max(32, min(MAX_HEIGHT, round(self.height / 32) * 32))
# Adjust number of frames to be in format 8k + 1
k = (self.num_frames - 1) // 8
num_frames = min((k * 8) + 1, MAX_FRAMES)
self.duration_sec = (num_frames - 1) / self.fps
# Set random seed if not specified
if self.seed == -1:
self.seed = random.randint(0, 2**32 - 1)
return self
class EndpointHandler:
"""Handles video generation requests using LTX models and Varnish post-processing"""
def __init__(self, model_path: str = ""):
"""Initialize the handler with LTX models and Varnish
Args:
model_path: Path to LTX model weights
"""
# Enable TF32 for potential speedup on Ampere GPUs
#torch.backends.cuda.matmul.allow_tf32 = True
# Initialize models with bfloat16 precision
self.text_to_video = LTXPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
).to("cuda")
self.image_to_video = LTXImageToVideoPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
).to("cuda")
# Enable CPU offload for memory efficiency
#self.text_to_video.enable_model_cpu_offload()
#self.image_to_video.enable_model_cpu_offload()
# temporary enable this if you have some issues with locating the model files
setup_debug_logging()
# Initialize Varnish for post-processing
self.varnish = Varnish(
device="cuda" if torch.cuda.is_available() else "cpu",
output_format="mp4",
output_codec="h264",
output_quality=23,
enable_mmaudio=False,
#model_base_dir=os.path.abspath(os.path.join(os.getcwd(), "varnish"))
)
async def process_frames(
self,
frames: torch.Tensor,
config: GenerationConfig
) -> tuple[str, dict]:
"""Post-process generated frames using Varnish
Args:
frames: Generated video frames tensor
config: Generation configuration
Returns:
Tuple of (video data URI, metadata dictionary)
"""
# Process video with Varnish
result = await self.varnish(
input_data=frames,
input_fps=config.fps,
upscale_factor=config.upscale_factor if config.upscale_factor > 1 else None,
enable_interpolation=config.enable_interpolation,
output_fps=config.fps
)
# Convert to data URI
video_uri = await result.write(
output_type="data-uri",
output_format="mp4",
output_codec="h264",
output_quality=23
)
# Collect metadata
metadata = {
"width": result.metadata.width,
"height": result.metadata.height,
"num_frames": result.metadata.frame_count,
"fps": result.metadata.fps,
"duration": result.metadata.duration,
"num_inference_steps": config.num_inference_steps,
"seed": config.seed,
"upscale_factor": config.upscale_factor,
"interpolation_enabled": config.enable_interpolation
}
return video_uri, metadata
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process incoming requests for video generation
Args:
data: Request data containing:
- inputs (str): Text prompt or image
- width (optional): Video width
- height (optional): Video height
- fps (optional): Frames per second
- duration_sec (optional): Video duration
- num_inference_steps (optional): Inference steps
- guidance_scale (optional): Guidance scale
- upscale_factor (optional): Upscaling factor
- enable_interpolation (optional): Enable frame interpolation
- seed (optional): Random seed
Returns:
Dictionary containing:
- video: Base64 encoded MP4 data URI
- content-type: MIME type
- metadata: Generation metadata
"""
# Extract prompt
prompt = data.get("inputs")
if not prompt:
raise ValueError("No prompt provided in the 'inputs' field")
# Create and validate configuration
config = GenerationConfig(
width=data.get("width", GenerationConfig.width),
height=data.get("height", GenerationConfig.height),
fps=data.get("fps", GenerationConfig.fps),
duration_sec=data.get("duration_sec", GenerationConfig.duration_sec),
num_inference_steps=data.get("num_inference_steps", GenerationConfig.num_inference_steps),
guidance_scale=data.get("guidance_scale", GenerationConfig.guidance_scale),
upscale_factor=data.get("upscale_factor", GenerationConfig.upscale_factor),
enable_interpolation=data.get("enable_interpolation", GenerationConfig.enable_interpolation),
seed=data.get("seed", GenerationConfig.seed)
).validate_and_adjust()
try:
with torch.no_grad():
# Set random seeds
random.seed(config.seed)
np.random.seed(config.seed)
generator = torch.manual_seed(config.seed)
# Prepare generation parameters
generation_kwargs = {
"prompt": prompt,
"height": config.height,
"width": config.width,
"num_frames": config.num_frames,
"guidance_scale": config.guidance_scale,
"num_inference_steps": config.num_inference_steps,
"output_type": "pt",
"generator": generator
}
# Check if image-to-video generation is requested
image_data = data.get("image")
if image_data:
# Process base64 image
if image_data.startswith('data:'):
image_data = image_data.split(',', 1)[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
generation_kwargs["image"] = image
frames = self.image_to_video(**generation_kwargs).frames
else:
frames = self.text_to_video(**generation_kwargs).frames
# Log original shape
logger.info(f"Original frames shape: {frames.shape}")
# Remove batch dimension if present
if len(frames.shape) == 5:
frames = frames.squeeze(0) # Remove batch dimension
logger.info(f"Processed frames shape: {frames.shape}")
# Ensure we have the correct shape
if len(frames.shape) != 4:
raise ValueError(f"Expected tensor of shape [frames, channels, height, width], got shape {frames.shape}")
# Post-process frames
loop = asyncio.new_event_loop()
try:
video_uri, metadata = loop.run_until_complete(
self.process_frames(frames, config)
)
except Exception as e:
raise RuntimeError(f"Failed to convert the frames to a video, because {str(e)}")
finally:
loop.close()
return {
"video": video_uri,
"content-type": "video/mp4",
"metadata": metadata
}
except Exception as e:
message = f"Error generating video ({str(e)})\n{traceback.format_exc()}"
print(message)
raise RuntimeError(message) |