File size: 10,064 Bytes
ef15707 132e8c4 1a6f91c b5d7f4c 1a6f91c e349e43 132e8c4 b5d7f4c 5f47c2b b5d7f4c 132e8c4 ef15707 d35cde0 132e8c4 d35cde0 132e8c4 d35cde0 ef15707 1a6f91c ef15707 1a6f91c ef15707 1a6f91c e349e43 1a6f91c e349e43 ef15707 e349e43 ef15707 e349e43 1a6f91c e349e43 1a6f91c ef15707 1a6f91c 132e8c4 ef15707 1a6f91c ef15707 132e8c4 d35cde0 ef15707 132e8c4 d35cde0 29cace5 132e8c4 d35cde0 132e8c4 ef15707 29cace5 ef15707 29cace5 ef15707 29cace5 b5d7f4c 29cace5 b5d7f4c e349e43 b5d7f4c e349e43 132e8c4 1a6f91c b5d7f4c ef15707 b5d7f4c ef15707 1a6f91c 29cace5 1a6f91c e349e43 ef15707 1a6f91c e349e43 ef15707 132e8c4 1a6f91c 132e8c4 d35cde0 1a6f91c d35cde0 ef15707 b5d7f4c ef15707 1a6f91c 132e8c4 e349e43 1a6f91c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from typing import Dict, Any, Union, Optional, Tuple
import torch
from diffusers import LTXPipeline, LTXImageToVideoPipeline
from PIL import Image
import base64
import io
import tempfile
import random
import numpy as np
from moviepy.editor import ImageSequenceClip
import os
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
ENABLE_CPU_OFFLOAD = True
EXPERIMENTAL_STUFF = False
random.seed(0)
np.random.seed(0)
generator = torch.manual_seed(0)
# you can notice we don't use device=cuda, for more info see:
# https://huggingface.co/docs/diffusers/v0.16.0/en/using-diffusers/reproducibility#gpu
class EndpointHandler:
# Default configuration
DEFAULT_FPS = 24
DEFAULT_DURATION = 4 # seconds
DEFAULT_NUM_FRAMES = (DEFAULT_DURATION * DEFAULT_FPS) + 1 # 97 frames
DEFAULT_NUM_STEPS = 25
DEFAULT_WIDTH = 768
DEFAULT_HEIGHT = 512
# Constraints
MAX_WIDTH = 1280
MAX_HEIGHT = 720
MAX_FRAMES = 257
def __init__(self, path: str = ""):
"""Initialize the LTX Video handler with both text-to-video and image-to-video pipelines.
Args:
path (str): Path to the model weights directory
"""
if EXPERIMENTAL_STUFF:
torch.backends.cuda.matmul.allow_tf32 = True
# Load both pipelines with bfloat16 precision as recommended in docs
self.text_to_video = LTXPipeline.from_pretrained(
path,
torch_dtype=torch.bfloat16
).to("cuda")
self.image_to_video = LTXImageToVideoPipeline.from_pretrained(
path,
torch_dtype=torch.bfloat16
).to("cuda")
if ENABLE_CPU_OFFLOAD:
self.text_to_video.enable_model_cpu_offload()
self.image_to_video.enable_model_cpu_offload()
def _validate_and_adjust_resolution(self, width: int, height: int) -> Tuple[int, int]:
"""Validate and adjust resolution to meet constraints.
Args:
width (int): Requested width
height (int): Requested height
Returns:
Tuple[int, int]: Adjusted (width, height)
"""
# Round to nearest multiple of 32
width = round(width / 32) * 32
height = round(height / 32) * 32
# Enforce maximum dimensions
width = min(width, self.MAX_WIDTH)
height = min(height, self.MAX_HEIGHT)
# Enforce minimum dimensions
width = max(width, 32)
height = max(height, 32)
return width, height
def _validate_and_adjust_frames(self, num_frames: Optional[int] = None, fps: Optional[int] = None) -> Tuple[int, int]:
"""Validate and adjust frame count and FPS to meet constraints.
Args:
num_frames (Optional[int]): Requested number of frames
fps (Optional[int]): Requested frames per second
Returns:
Tuple[int, int]: Adjusted (num_frames, fps)
"""
# Use defaults if not provided
fps = fps or self.DEFAULT_FPS
num_frames = num_frames or self.DEFAULT_NUM_FRAMES
# Adjust frames to be in format 8k + 1
k = (num_frames - 1) // 8
num_frames = (k * 8) + 1
# Enforce maximum frame count
num_frames = min(num_frames, self.MAX_FRAMES)
return num_frames, fps
def _create_video_file(self, frames: torch.Tensor, fps: int = DEFAULT_FPS) -> bytes:
"""Convert frames to an MP4 video file.
Args:
frames (torch.Tensor): Generated frames tensor
fps (int): Frames per second for the output video
Returns:
bytes: MP4 video file content
"""
# Log frame information
num_frames = frames.shape[1]
duration = num_frames / fps
logger.info(f"Creating video with {num_frames} frames at {fps} FPS (duration: {duration:.2f} seconds)")
# Convert tensor to numpy array
video_np = frames.squeeze(0).permute(0, 2, 3, 1).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
# Get dimensions
_, height, width, _ = video_np.shape
logger.info(f"Video dimensions: {width}x{height}")
# Create temporary file
output_path = tempfile.mktemp(suffix=".mp4")
try:
# Create video clip and write to file
clip = ImageSequenceClip(list(video_np), fps=fps)
clip.write_videofile(output_path, codec="libx264", audio=False)
# Read the video file
with open(output_path, "rb") as f:
video_content = f.read()
return video_content
finally:
# Cleanup
if os.path.exists(output_path):
os.remove(output_path)
# Clear memory
del video_np
torch.cuda.empty_cache()
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process the input data and generate video using LTX.
Args:
data (Dict[str, Any]): Input data containing:
- prompt (str): Text description for video generation
- image (Optional[str]): Base64 encoded image for image-to-video generation
- width (Optional[int]): Video width (default: 768)
- height (Optional[int]): Video height (default: 512)
- num_frames (Optional[int]): Number of frames (default: 97)
- fps (Optional[int]): Frames per second (default: 24)
- num_inference_steps (Optional[int]): Number of inference steps (default: 25)
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
Returns:
Dict[str, Any]: Dictionary containing:
- video: video encoded in Base64 (h.264 MP4 video). This is a data-uri (prefixed with "data:").
- content-type: MIME type of the video (right now always "video/mp4")
- metadata: Dictionary with actual values used for generation
"""
# Get inputs from request data
prompt = data.get("inputs", None)
if not prompt:
raise ValueError("No prompt provided in the 'inputs' field")
# Get and validate resolution
width = data.get("width", self.DEFAULT_WIDTH)
height = data.get("height", self.DEFAULT_HEIGHT)
width, height = self._validate_and_adjust_resolution(width, height)
# Get and validate frames and FPS
num_frames = data.get("num_frames", self.DEFAULT_NUM_FRAMES)
fps = data.get("fps", self.DEFAULT_FPS)
num_frames, fps = self._validate_and_adjust_frames(num_frames, fps)
# Get other parameters with defaults
guidance_scale = data.get("guidance_scale", 7.5)
num_inference_steps = data.get("num_inference_steps", self.DEFAULT_NUM_STEPS)
seed = data.get("seed", -1)
seed = random.randint(0, 2**32 - 1) if seed == -1 else int(seed)
logger.info(f"Generating video with prompt: '{prompt}'")
logger.info(f"Video params: size={width}x{height}, num_frames={num_frames}, fps={fps}")
logger.info(f"Generation params: seed={seed}, guidance_scale={guidance_scale}, num_inference_steps={num_inference_steps}")
try:
with torch.no_grad():
random.seed(seed)
np.random.seed(seed)
generator.manual_seed(args.seed)
generation_kwargs = {
"prompt": prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"output_type": "pt",
"generator": generator
}
# Check if image is provided for image-to-video generation
image_data = data.get("image")
if image_data:
if image_data.startswith('data:'):
image_data = image_data.split(',', 1)[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
logger.info("Using image-to-video generation mode")
generation_kwargs["image"] = image
output = self.image_to_video(**generation_kwargs).frames
else:
logger.info("Using text-to-video generation mode")
output = self.text_to_video(**generation_kwargs).frames
# Convert frames to video file
video_content = self._create_video_file(output, fps=fps)
# Encode video to base64
video_base64 = base64.b64encode(video_content).decode('utf-8')
content_type = "video/mp4"
# Add MP4 data URI prefix
video_data_uri = f"data:{content_type};base64,{video_base64}"
return {
"video": video_data_uri,
"content-type": content_type,
"metadata": {
"width": width,
"height": height,
"num_frames": num_frames,
"fps": fps,
"duration": num_frames / fps,
"num_inference_steps": num_inference_steps,
"seed": seed
}
}
except Exception as e:
logger.error(f"Error generating video: {str(e)}")
raise RuntimeError(f"Error generating video: {str(e)}") |