File size: 15,028 Bytes
be2df75 2039f5a be2df75 132e8c4 ea52235 be2df75 b5d7f4c a5265d3 6789b6e 1a6f91c be2df75 2fa2e84 e349e43 132e8c4 be2df75 9d84818 1fd04e8 9d84818 2039f5a 1fd04e8 0cf5bce 1fd04e8 be2df75 1fd04e8 be2df75 1fd04e8 be2df75 1fd04e8 be2df75 d585ae1 be2df75 1fd04e8 be2df75 85f39ae 132e8c4 be2df75 d35cde0 be2df75 132e8c4 be2df75 132e8c4 be2df75 d35cde0 be2df75 132e8c4 be2df75 132e8c4 be2df75 132e8c4 be2df75 ef15707 be2df75 f6dd4f3 1fd04e8 58774ec f6dd4f3 be2df75 ef15707 be2df75 ef15707 be2df75 ef15707 99df0e2 0e79ca6 1fd04e8 d585ae1 99df0e2 1fd04e8 99df0e2 132e8c4 1fd04e8 132e8c4 be2df75 132e8c4 be2df75 1fd04e8 d585ae1 132e8c4 be2df75 132e8c4 1fd04e8 132e8c4 be2df75 1fd04e8 d585ae1 be2df75 1fd04e8 e349e43 132e8c4 1a6f91c be2df75 b5d7f4c 1fd04e8 ef15707 1fd04e8 b5d7f4c ef15707 1fd04e8 ea52235 be2df75 1fd04e8 be2df75 1fd04e8 1a6f91c ef15707 f6dd4f3 1a6f91c f6dd4f3 28cbc54 be2df75 28cbc54 d585ae1 1a6f91c be2df75 f6dd4f3 1a6f91c 132e8c4 a5265d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
from dataclasses import dataclass
from pathlib import Path
import pathlib
from typing import Dict, Any, Optional, Tuple
import asyncio
import base64
import io
import pprint
import logging
import random
import traceback
import os
import numpy as np
import torch
from diffusers import LTXPipeline, LTXImageToVideoPipeline
from PIL import Image
from varnish import Varnish
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constraints
MAX_WIDTH = 1280
MAX_HEIGHT = 720
MAX_FRAMES = 257
# this is only a temporary solution (famous last words)
def apply_dirty_hack_to_patch_file_extensions_and_bypass_filter(directory):
"""
Recursively rename all '.wut' files to '.pth' in the given directory
Args:
directory (str): Path to the directory to process
"""
# Convert the directory path to absolute path
directory = os.path.abspath(directory)
# Walk through directory and its subdirectories
for root, _, files in os.walk(directory):
for filename in files:
if filename.endswith('.wut'):
# Get full path of the file
old_path = os.path.join(root, filename)
# Create new filename by replacing the extension
new_filename = filename.replace('.wut', '.pth')
new_path = os.path.join(root, new_filename)
try:
os.rename(old_path, new_path)
print(f"Renamed: {old_path} -> {new_path}")
except OSError as e:
print(f"Error renaming {old_path}: {e}")
def print_directory_structure(startpath):
"""Print the directory structure starting from the given path."""
for root, dirs, files in os.walk(startpath):
level = root.replace(startpath, '').count(os.sep)
indent = ' ' * 4 * level
logger.info(f"{indent}{os.path.basename(root)}/")
subindent = ' ' * 4 * (level + 1)
for f in files:
logger.info(f"{subindent}{f}")
logger.info("💡 Applying a dirty hack (patch ""/repository"" to fix file extensions):")
apply_dirty_hack_to_patch_file_extensions_and_bypass_filter("/repository")
#logger.info("💡 Printing directory structure of ""/repository"":")
#print_directory_structure("/repository")
@dataclass
class GenerationConfig:
"""Configuration for video generation"""
# general content settings
prompt: str = ""
negative_prompt: str = "worst quality, inconsistent motion, blurry, jittery, distorted, cropped, watermarked, watermark, logo, subtitle, subtitles, lowres",
# video model settings (will be used during generation of the initial raw video clip)
width: int = 768
height: int = 512
# users may tend to always set this to the max, to get as much useable content as possible (which is MAX_FRAMES ie. 257).
# The value must be a multiple of 8, plus 1 frame.
num_frames: int = 129
guidance_scale: float = 7.5
num_inference_steps: int = 50
# reproducible generation settings
seed: int = -1 # -1 means random seed
# varnish settings (will be used for post-processing after the raw video clip has been generated
fps: int = 24 # FPS of the final video (only applied at the the very end, when converting to mp4)
double_num_frames: bool = True # if True, the number of frames will be multiplied by 2 using RIFE
super_resolution: bool = True # if True, the resolution will be multiplied by 2 using Real_ESRGAN
grain_amount: float = 0.0
# audio settings
enable_audio: bool = False # Whether to generate audio
audio_prompt: str = "" # Text prompt for audio generation
audio_negative_prompt: str = "voices, voice, talking, speaking, speech" # Negative prompt for audio generation
def validate_and_adjust(self) -> 'GenerationConfig':
"""Validate and adjust parameters to meet constraints"""
# Round dimensions to nearest multiple of 32
self.width = max(32, min(MAX_WIDTH, round(self.width / 32) * 32))
self.height = max(32, min(MAX_HEIGHT, round(self.height / 32) * 32))
# Adjust number of frames to be in format 8k + 1
k = (self.num_frames - 1) // 8
num_frames = min((k * 8) + 1, MAX_FRAMES)
# Set random seed if not specified
if self.seed == -1:
self.seed = random.randint(0, 2**32 - 1)
return self
class EndpointHandler:
"""Handles video generation requests using LTX models and Varnish post-processing"""
def __init__(self, model_path: str = ""):
"""Initialize the handler with LTX models and Varnish
Args:
model_path: Path to LTX model weights
"""
# Enable TF32 for potential speedup on Ampere GPUs
#torch.backends.cuda.matmul.allow_tf32 = True
# Initialize models with bfloat16 precision
self.text_to_video = LTXPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
).to("cuda")
self.image_to_video = LTXImageToVideoPipeline.from_pretrained(
model_path,
torch_dtype=torch.bfloat16
).to("cuda")
# Enable CPU offload for memory efficiency
#self.text_to_video.enable_model_cpu_offload()
#self.image_to_video.enable_model_cpu_offload()
# Initialize Varnish for post-processing
self.varnish = Varnish(
device="cuda" if torch.cuda.is_available() else "cpu",
output_format="mp4",
output_codec="h264",
output_quality=17,
model_base_dir="/repository/varnish",
)
async def process_frames(
self,
frames: torch.Tensor,
config: GenerationConfig
) -> tuple[str, dict]:
"""Post-process generated frames using Varnish
Args:
frames: Generated video frames tensor
config: Generation configuration
Returns:
Tuple of (video data URI, metadata dictionary)
"""
try:
# Process video with Varnish
result = await self.varnish(
input_data=frames, # note: this might contain a certain number of frames eg. 97, which will get doubled if double_num_frames is True
fps=config.fps, # this is the FPS of the final output video. This number can be used by Varnish to calculate the duration of a clip ((using frames * factor) / fps etc)
double_num_frames=config.double_num_frames, # if True, the number of frames will be multiplied by 2 using RIFE
super_resolution=config.grain_amount_config, # if True, the resolution will be multiplied by 2 using Real_ESRGAN
grain_amount_config.grain_amount,
enable_audio=config.enable_audio,
audio_prompt=config.audio_prompt,
audio_negative_prompt=config.audio_negative_prompt,
)
# Convert to data URI
video_uri = await result.write(
type="data-uri",
format="mp4",
codec="h264",
quality=23
)
# Collect metadata
metadata = {
"width": result.metadata.width,
"height": result.metadata.height,
"num_frames": result.metadata.frame_count,
"fps": result.metadata.fps,
"duration": result.metadata.duration,
"seed": config.seed,
}
return video_uri, metadata
except Exception as e:
logger.error(f"Error in process_frames: {str(e)}")
raise RuntimeError(f"Failed to process frames: {str(e)}")
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process incoming requests for video generation
Args:
data: Request data containing:
- inputs (dict): Dictionary containing input, which can be either "prompt" (text field) or "image" (input image)
- parameters (dict):
- prompt (required, string): list of concepts to keep in the video.
- negative_prompt (optional, string): list of concepts to ignore in the video.
- width (optional, int, default to 768): width, or horizontal size in pixels.
- height (optional, int, default to 512): height, or vertical size in pixels.
- num_frames (optional, int, default to 129): the numer of frames must be a multiple of 8, plus 1 frame.
- guidance_scale (optional, float, default to 7.5): Guidance scale
- num_inference_steps (optional, int, default to 50): number of inference steps
- seed (optional, int, default to -1): set a random number generator seed, -1 means random seed.
- fps (optional, int, default to 24): FPS of the final video
- double_num_frames (optional, bool): if enabled, the number of frames will be multiplied by 2 using RIFE
- super_resolution (optional, bool): if enabled, the resolution will be multiplied by 2 using Real_ESRGAN
- grain_amount (optional, float): amount of film grain to add to the output video
- enable_audio (optional, bool): automatically generate an audio track
- audio_prompt (optional, str): prompt to use for the audio generation (concepts to add)
- audio_negative_prompt (optional, str): nehative prompt to use for the audio generation (concepts to ignore)
Returns:
Dictionary containing:
- video: Base64 encoded MP4 data URI
- content-type: MIME type
- metadata: Generation metadata
"""
inputs = data.get("inputs", dict())
input_prompt = inputs.get("prompt", "")
input_image = inputs.get("image")
params = data.get("parameters", dict())
if not input_prompt:
raise ValueError("The prompt should not be empty")
logger.info(f"Prompt: {input_prompt}")
logger.info(f"Raw parameters:")
pprint.pprint(params)
# Create and validate configuration
config = GenerationConfig(
# general content settings
prompt: input_prompt,
negative_prompt=params.get("negative_prompt", GenerationConfig.negative_prompt),
# video model settings (will be used during generation of the initial raw video clip)
width=params.get("width", GenerationConfig.width),
height=params.get("height", GenerationConfig.height),
num_frames=params.get"num_frames", GenerationConfig.num_frames),
guidance_scale=params.get("guidance_scale", GenerationConfig.guidance_scale),
num_inference_steps=params.get("num_inference_steps", GenerationConfig.num_inference_steps),
# reproducible generation settings
seed=params.get("seed", GenerationConfig.seed)
# varnish settings (will be used for post-processing after the raw video clip has been generated)
fps=params.get("fps", GenerationConfig.fps), # FPS of the final video (only applied at the the very end, when converting to mp4)
double_num_frames=params.get("double_num_frames", GenerationConfig.double_num_frames), # if True, the number of frames will be multiplied by 2 using RIFE
super_resolution=params.get("super_resolution", GenerationConfig.super_resolution), # if True, the resolution will be multiplied by 2 using Real_ESRGAN
grain_amount=params.get("grain_amount", GenerationConfig.grain_amount),
enable_audio=params.get("enable_audio", GenerationConfig.enable_audio),
audio_prompt=params.get("audio_prompt", GenerationConfig.audio_prompt),
audio_negative_prompt=params.get("audio_negative_prompt", GenerationConfig.audio_negative_prompt),
).validate_and_adjust()
logger.info(f"Global request settings:")
pprint.pprint(config)
try:
with torch.no_grad():
# Set random seeds
random.seed(config.seed)
np.random.seed(config.seed)
generator = torch.manual_seed(config.seed)
# Prepare generation parameters for the video model (we omit params that are destined to Varnish)
generation_kwargs = {
# general content settings
prompt: config.prompt,
negative_prompt=config.negative_prompt,
# video model settings (will be used during generation of the initial raw video clip)
width=params.config.width,
height=config.height,
num_frames=config.num_frames,
guidance_scale=config.guidance_scale,
num_inference_steps=config.num_inference_steps,
# reproducible generation settings
seed=config.seed,
# constants
"output_type": "pt",
"generator": generator
}
logger.info(f"Video model generation settings:")
pprint.pprint(generation_kwargs)
# Check if image-to-video generation is requested
if input_image:
# Process base64 image
if input_image.startswith('data:'):
input_image = image_data.split(',', 1)[1]
image_bytes = base64.b64decode(input_image)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
generation_kwargs["image"] = image
frames = self.image_to_video(**generation_kwargs).frames
else:
frames = self.text_to_video(**generation_kwargs).frames
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
video_uri, metadata = loop.run_until_complete(self.process_frames(frames, config))
return {
"video": video_uri,
"content-type": "video/mp4",
"metadata": metadata
}
except Exception as e:
message = f"Error generating video ({str(e)})\n{traceback.format_exc()}"
print(message)
raise RuntimeError(message) |