File size: 9,698 Bytes
ef15707 132e8c4 1a6f91c b5d7f4c 1a6f91c e349e43 85f39ae e349e43 132e8c4 b5d7f4c 5f47c2b b5d7f4c 85f39ae 132e8c4 ef15707 d35cde0 132e8c4 d35cde0 132e8c4 d35cde0 ef15707 f6dd4f3 ef15707 1a6f91c ef15707 1a6f91c f6dd4f3 1a6f91c f6dd4f3 1a6f91c f6dd4f3 1a6f91c f6dd4f3 132e8c4 ef15707 1a6f91c ef15707 132e8c4 d35cde0 ef15707 132e8c4 f6dd4f3 29cace5 132e8c4 d35cde0 132e8c4 f6dd4f3 29cace5 ef15707 f6dd4f3 29cace5 ef15707 f6dd4f3 29cace5 b5d7f4c e349e43 132e8c4 1a6f91c b5d7f4c cfe4602 b5d7f4c ef15707 b5d7f4c ef15707 f6dd4f3 ef15707 1a6f91c 29cace5 1a6f91c ef15707 f6dd4f3 1a6f91c f6dd4f3 132e8c4 f6dd4f3 1a6f91c f6dd4f3 d35cde0 1a6f91c d35cde0 f6dd4f3 1a6f91c 132e8c4 e349e43 1a6f91c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from typing import Dict, Any, Union, Optional, Tuple
import torch
from diffusers import LTXPipeline, LTXImageToVideoPipeline
from PIL import Image
import base64
import io
import tempfile
import random
import numpy as np
from moviepy.editor import ImageSequenceClip
import os
import logging
import asyncio
from varnish import Varnish
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
ENABLE_CPU_OFFLOAD = True
EXPERIMENTAL_STUFF = False
random.seed(0)
np.random.seed(0)
generator = torch.manual_seed(0)
# you can notice we don't use device=cuda, for more info see:
# https://huggingface.co/docs/diffusers/v0.16.0/en/using-diffusers/reproducibility#gpu
varnish = Varnish(
enable_mmaudio=False,
#mmaudio_config=mmaudio_config
)
class EndpointHandler:
# Default configuration
DEFAULT_FPS = 24
DEFAULT_DURATION = 4 # seconds
DEFAULT_NUM_FRAMES = (DEFAULT_DURATION * DEFAULT_FPS) + 1 # 97 frames
DEFAULT_NUM_STEPS = 25
DEFAULT_WIDTH = 768
DEFAULT_HEIGHT = 512
# Constraints
MAX_WIDTH = 1280
MAX_HEIGHT = 720
MAX_FRAMES = 257
def __init__(self, path: str = ""):
"""Initialize the LTX Video handler with both text-to-video and image-to-video pipelines.
Args:
path (str): Path to the model weights directory
"""
if EXPERIMENTAL_STUFF:
torch.backends.cuda.matmul.allow_tf32 = True
# Load both pipelines with bfloat16 precision as recommended in docs
self.text_to_video = LTXPipeline.from_pretrained(
path,
torch_dtype=torch.bfloat16
).to("cuda")
self.image_to_video = LTXImageToVideoPipeline.from_pretrained(
path,
torch_dtype=torch.bfloat16
).to("cuda")
if ENABLE_CPU_OFFLOAD:
self.text_to_video.enable_model_cpu_offload()
self.image_to_video.enable_model_cpu_offload()
self.varnish = Varnish(
device="cuda" if torch.cuda.is_available() else "cpu",
output_format="mp4",
output_codec="h264",
output_quality=23,
enable_mmaudio=False
)
def _validate_and_adjust_resolution(self, width: int, height: int) -> Tuple[int, int]:
"""Validate and adjust resolution to meet constraints.
Args:
width (int): Requested width
height (int): Requested height
Returns:
Tuple[int, int]: Adjusted (width, height)
"""
# Round to nearest multiple of 32
width = round(width / 32) * 32
height = round(height / 32) * 32
# Enforce maximum dimensions
width = min(width, self.MAX_WIDTH)
height = min(height, self.MAX_HEIGHT)
# Enforce minimum dimensions
width = max(width, 32)
height = max(height, 32)
return width, height
def _validate_and_adjust_frames(self, num_frames: Optional[int] = None, fps: Optional[int] = None) -> Tuple[int, int]:
"""Validate and adjust frame count and FPS to meet constraints.
Args:
num_frames (Optional[int]): Requested number of frames
fps (Optional[int]): Requested frames per second
Returns:
Tuple[int, int]: Adjusted (num_frames, fps)
"""
# Use defaults if not provided
fps = fps or self.DEFAULT_FPS
num_frames = num_frames or self.DEFAULT_NUM_FRAMES
# Adjust frames to be in format 8k + 1
k = (num_frames - 1) // 8
num_frames = (k * 8) + 1
# Enforce maximum frame count
num_frames = min(num_frames, self.MAX_FRAMES)
return num_frames, fps
async def process_and_encode_video(
self,
frames: torch.Tensor,
fps: int,
upscale_factor: int = 0,
enable_interpolation: bool = False,
interpolation_exp: int = 1
) -> tuple[str, dict]:
"""Process video frames using Varnish and return base64 encoded result"""
# Process video with Varnish
result = await self.varnish(
input_data=frames,
input_fps=fps,
output_fps=fps,
enable_upscale=upscale_factor > 1,
upscale_factor=upscale_factor,
enable_interpolation=enable_interpolation,
interpolation_exp=interpolation_exp
)
# Get video as data URI
video_data_uri = await result.write(
output_type="data-uri",
output_format="mp4",
output_codec="h264",
output_quality=23
)
metadata = {
"width": result.metadata.width,
"height": result.metadata.height,
"num_frames": result.metadata.frame_count,
"fps": result.metadata.fps,
"duration": result.metadata.duration
}
return video_data_uri, metadata
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Process the input data and generate video using LTX.
Args:
data (Dict[str, Any]): Input data containing:
- prompt (str): Text description for video generation
- image (Optional[str]): Base64 encoded image for image-to-video generation
- width (Optional[int]): Video width (default: 768)
- height (Optional[int]): Video height (default: 512)
- num_frames (Optional[int]): Number of frames (default: 97)
- fps (Optional[int]): Frames per second (default: 24)
- num_inference_steps (Optional[int]): Number of inference steps (default: 25)
- guidance_scale (Optional[float]): Guidance scale (default: 7.5)
Returns:
Dict[str, Any]: Dictionary containing:
- video: video encoded in Base64 (h.264 MP4 video). This is a data-uri (prefixed with "data:").
- content-type: MIME type of the video (right now always "video/mp4")
- metadata: Dictionary with actual values used for generation
"""
prompt = data.get("inputs", None)
if not prompt:
raise ValueError("No prompt provided in the 'inputs' field")
# Get generation parameters
width = data.get("width", self.DEFAULT_WIDTH)
height = data.get("height", self.DEFAULT_HEIGHT)
width, height = self._validate_and_adjust_resolution(width, height)
num_frames = data.get("num_frames", self.DEFAULT_NUM_FRAMES)
fps = data.get("fps", self.DEFAULT_FPS)
num_frames, fps = self._validate_and_adjust_frames(num_frames, fps)
# Get post-processing parameters
upscale_factor = data.get("upscale_factor", 0)
enable_interpolation = data.get("enable_interpolation", False)
interpolation_exp = data.get("interpolation_exp", 1)
guidance_scale = data.get("guidance_scale", 7.5)
num_inference_steps = data.get("num_inference_steps", self.DEFAULT_NUM_STEPS)
seed = data.get("seed", -1)
seed = random.randint(0, 2**32 - 1) if seed == -1 else int(seed)
try:
with torch.no_grad():
random.seed(seed)
np.random.seed(seed)
generator.manual_seed(seed)
generation_kwargs = {
"prompt": prompt,
"height": height,
"width": width,
"num_frames": num_frames,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"output_type": "pt",
"generator": generator
}
# Generate frames using appropriate pipeline
image_data = data.get("image")
if image_data:
if image_data.startswith('data:'):
image_data = image_data.split(',', 1)[1]
image_bytes = base64.b64decode(image_data)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
generation_kwargs["image"] = image
frames = self.image_to_video(**generation_kwargs).frames
else:
frames = self.text_to_video(**generation_kwargs).frames
# Process and encode video
video_data_uri, metadata = await self.process_and_encode_video(
frames=frames,
fps=fps,
upscale_factor=upscale_factor,
enable_interpolation=enable_interpolation,
interpolation_exp=interpolation_exp
)
# Add generation metadata
metadata.update({
"num_inference_steps": num_inference_steps,
"seed": seed,
"upscale_factor": upscale_factor,
"interpolation_enabled": enable_interpolation,
"interpolation_exp": interpolation_exp
})
return {
"video": video_data_uri,
"content-type": "video/mp4",
"metadata": metadata
}
except Exception as e:
logger.error(f"Error generating video: {str(e)}")
raise RuntimeError(f"Error generating video: {str(e)}") |