{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e3c430982c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 760000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699701159339049000, "learning_rate": 0.0003, "tensorboard_log": "logs", "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKYfLj5htaa8AsxaOsuLq7g8dRS+HO6WuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.24019199999999996, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVBQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHLnBaLXL/2MAWyUTUIBjAF0lEdAb3Pk7wKBunV9lChoBkdAcx8xc3VComgHTQEBaAhHQG91SmALApN1fZQoaAZHQHHZVsLv1DloB0vxaAhHQG92l/6O5rh1fZQoaAZHQGQ5VrylN11oB03oA2gIR0BvhidBjWkKdX2UKGgGR0BwWklNUOuraAdL6mgIR0Bvh24smOU/dX2UKGgGR0ByAjhhpg1FaAdNjwFoCEdAb4mv+OwPiHV9lChoBkdAPM5R8+iaiWgHS8RoCEdAb4q7V8Ti83V9lChoBkdAb/PAzpHI62gHS+NoCEdAb4vyhBZ6lnV9lChoBkdAbuR1tfoicGgHS/BoCEdAb4078Nx2jnV9lChoBkdAcafDcuanaWgHS/loCEdAb46TYdyT6nV9lChoBkdAb7iVxCIDYGgHS/hoCEdAb5ncafjCHnV9lChoBkdAcMt7CiyprGgHTQsBaAhHQG+bRMFlkH51fZQoaAZHQHGFFAeJYT1oB00bAWgIR0BvnL4+KTB7dX2UKGgGR0BxTKoaUA1faAdL+GgIR0BvngukDZDidX2UKGgGR0BwK6kfs/puaAdL5mgIR0Bvn0C1Z1V6dX2UKGgGR0Bx7AUzsQd0aAdNHAFoCEdAb6C6e5Fw1nV9lChoBkdAcdewdKdxyWgHS9toCEdAb6Hgssg+yXV9lChoBkdAcIKRAKOT7mgHS+poCEdAb6Mg4ffXPXV9lChoBkdAbLF6SDAaemgHTQYBaAhHQG+udkauOjt1fZQoaAZHQG1bfGdZq21oB0voaAhHQG+vr8R+SbJ1fZQoaAZHQG0gp7sv7FdoB0vkaAhHQG+w7Llmvnt1fZQoaAZHQG86r8iwB5poB0vqaAhHQG+yNL127nR1fZQoaAZHQHFuTHKfWc1oB0vgaAhHQG+zauOjqOd1fZQoaAZHQHFxM/D+BH1oB00gAWgIR0BvtP3YcvM9dX2UKGgGR0BwzrQJHAh0aAdL1mgIR0BvtiQT238XdX2UKGgGR0Bw0D+BH09RaAdL72gIR0Bvt2p0fYBedX2UKGgGR0BJBR77bcoIaAdLw2gIR0BvuHMQmNR4dX2UKGgGR0BxQ5M+NcW1aAdL82gIR0BvxGKTB68hdX2UKGgGR0Btw32IwdsBaAdNmgFoCEdAb8adQwblzXV9lChoBkdARbZTMqz7dmgHS8ZoCEdAb8elAu7HyXV9lChoBkdAbjcjASFoMGgHS+poCEdAb83osZpBX3V9lChoBkdAcYff779AHGgHTQgBaAhHQG/PVkMCtA91fZQoaAZHQHI5XC9AX2xoB00iAWgIR0Bv0OjsUqQSdX2UKGgGR0BwsV2hZha1aAdL6WgIR0Bv0ir/82rGdX2UKGgGR0BwKs9zOopAaAdL3GgIR0Bv01h/iHZcdX2UKGgGR0ByExPqLS/kaAdL2GgIR0Bv3o44p+c6dX2UKGgGR0BQMG65Gz8haAdL02gIR0Bv37LhaTwEdX2UKGgGR0BwbhfTkQwsaAdLzGgIR0Bv4M6PsAvMdX2UKGgGR0ByjgM+eOGTaAdNFQFoCEdAb+JYvFm4AnV9lChoBkdAcYctvn8sMGgHS+1oCEdAb+OkSElE7XV9lChoBkdAcSVOARTS9mgHS/doCEdAb+T7sv7FbXV9lChoBkdAcVKFUQ04zmgHS/9oCEdAb+ZfLLZBcHV9lChoBkdAb1IHoHLRr2gHS+BoCEdAb+eT3Zf2K3V9lChoBkdAcExZb6guiGgHTQUBaAhHQG/o8mBvrGB1fZQoaAZHQG/hYcebNKRoB00TAWgIR0Bv9FKK508vdX2UKGgGR0BxPXFLnLaFaAdNDAFoCEdAb/W7cO9WZXV9lChoBkdAcW0JtSAH3WgHS+RoCEdAb/btCRfWtnV9lChoBkdAcmdhL5AQhGgHS9poCEdAb/gROk+HJ3V9lChoBkdAcAN/QSi/PGgHTQIBaAhHQG/5a19fCyh1fZQoaAZHQHC6sZxaPjpoB00BAWgIR0Bv+sI1LrX2dX2UKGgGR0Byz7UPQOWjaAdNEAFoCEdAb/wsJ6Y3N3V9lChoBkdAZPccG1QZXWgHTegDaAhHQHAF9Ynv2Gt1fZQoaAZHQHAY6M72crloB0vhaAhHQHAGkGu9vjx1fZQoaAZHQHEH88gZCOZoB0vjaAhHQHAHLaZhKDl1fZQoaAZHQHH6513dKuloB0vpaAhHQHAHz8cdYGN1fZQoaAZHQEtISEDhcZ9oB0u4aAhHQHAITVQQ+U11fZQoaAZHQG9OnJDE3sJoB0vWaAhHQHAI4OlO45N1fZQoaAZHQG5EEMTewcJoB0vyaAhHQHAJiFwkxAV1fZQoaAZHQHBeef7JnxtoB00CAWgIR0BwDyqGUOd5dX2UKGgGR0BwL0F3Y+SsaAdL9mgIR0BwD9BkZrHmdX2UKGgGR0BRlKtDD0lJaAdLvGgIR0BwEE1zhgmadX2UKGgGR0BxckkKNQ0oaAdL8GgIR0BwEO/k/8l5dX2UKGgGR0Bw9cIdELH/aAdNAgFoCEdAcBGdHDrJKnV9lChoBkdAcqxN6PbO/2gHS+xoCEdAcBI9QGfPHHV9lChoBkdAcYBkaMrEtWgHS+ZoCEdAcBLWom5UcXV9lChoBkdAcYj7Wd3B6GgHS9ZoCEdAcBNmAskIHHV9lChoBkdAbQhFF2FFlWgHS/loCEdAcBj5OJtSAHV9lChoBkdAa5yEUTL4e2gHS9hoCEdAcBmPldTo+3V9lChoBkdAbfwH0K7ZnWgHTQEBaAhHQHAcshgVoHt1fZQoaAZHQHDzHRLK3d9oB0v/aAhHQHAdYwRGtp51fZQoaAZHQHBUCkj5bhZoB0vyaAhHQHAeCeAd4ml1fZQoaAZHQGJsiXpnpStoB03oA2gIR0BwINPCVKPGdX2UKGgGR0ByLIDMeOn3aAdNHgFoCEdAcCaXrdFfA3V9lChoBkdAbCLwQ176YWgHS9hoCEdAcCcwblzU7XV9lChoBkdAb5K4c3l0YGgHS9VoCEdAcCfE9Mbm2nV9lChoBkdAcTW78ejmCGgHTQYBaAhHQHAofZmI0qJ1fZQoaAZHQGk9bALy+YdoB01lAWgIR0BwKXoNd7fIdX2UKGgGR0BxDSqABkqdaAdNFgFoCEdAcCo0elsP8XV9lChoBkdAciuKoQ4CIWgHS+toCEdAcCrpSrHU+nV9lChoBkdAcNfX8O09hmgHS/RoCEdAcCuoS+QEIXV9lChoBkdAYLhVLBbfQGgHTegDaAhHQHAzhj8UEgZ1fZQoaAZHQG/sjneSB9VoB00BAWgIR0BwNDkHUtqYdX2UKGgGR0BwZ7+Lm6oVaAdL52gIR0BwNNkd3jdYdX2UKGgGR0BxfSzTnaFmaAdL/mgIR0BwNYpWmxdIdX2UKGgGR0Bxn4i4axX5aAdNDgFoCEdAcDZEETxoZnV9lChoBkdAb7KfJV81GmgHTQMBaAhHQHA76lYU34t1fZQoaAZHQHBa89fTkQxoB0voaAhHQHA8jI/7iyZ1fZQoaAZHQG7VeAuqWC5oB0vqaAhHQHA9KhYeT3Z1fZQoaAZHQG4z/Yao/A1oB0vtaAhHQHA9y619fC11fZQoaAZHQHDTtTLns9loB0v/aAhHQHA+e8oQWep1fZQoaAZHQHBVmCVbA1xoB0v+aAhHQHA/Jkwvg3t1fZQoaAZHQHAlHyEtdzJoB0veaAhHQHA/vPgNwzd1fZQoaAZHQG9PDn/1g6VoB00AAWgIR0BwQGoP07KadX2UKGgGR0BvJ0twrDqGaAdL82gIR0BwRjtKIznBdX2UKGgGR0BwXyUmlZX/aAdNCAFoCEdAcEbs8xKxs3V9lChoBkdASY8dzXBgu2gHS8ZoCEdAcEdv7WNFSnV9lChoBkdAUL5JDmbLEGgHS8FoCEdAcEfvo/zJ63V9lChoBkdAc3C2TPjXF2gHTTwBaAhHQHBIwM6RyOt1fZQoaAZHQHDqEQ9RrJtoB00kAWgIR0BwSYXdj5KwdX2UKGgGR0BxWDBk7OmjaAdNAwFoCEdAcEo2/SH/LnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3710, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}