|
from transformers import PretrainedConfig, PreTrainedModel |
|
import torch, transformers |
|
from typing import List, Optional, Tuple, Union |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from .VisualTransformer import VisionTransformer, LayerNorm |
|
from functools import partial |
|
from transformers import TextIteratorStreamer |
|
from transformers import StoppingCriteria, GenerationConfig |
|
from threading import Thread |
|
from dataclasses import dataclass |
|
import numpy as np |
|
from PIL import Image |
|
|
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<image>" |
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>" |
|
DEFAULT_IM_START_TOKEN = "<im_start>" |
|
DEFAULT_IM_END_TOKEN = "<im_end>" |
|
class AttrDict(dict): |
|
def __init__(self, *args, **kwargs): |
|
super(AttrDict, self).__init__(*args, **kwargs) |
|
self.__dict__ = self |
|
def __getattr__(self, key): |
|
if key in self: |
|
return self[key] |
|
raise AttributeError(f"'AttrDict' object has no attribute '{key}'") |
|
|
|
|
|
class CXRLLAVAConfig(PretrainedConfig): |
|
model_type = "CXR-LLAVA" |
|
|
|
def __init__(self, **kwargs,): |
|
|
|
if 'llama' in kwargs: |
|
self.llama = AttrDict(kwargs['llama']) |
|
del kwargs['llama'] |
|
|
|
self.__dict__.update(kwargs) |
|
super().__init__(**kwargs) |
|
|
|
|
|
class CXRLLAVAModel(PreTrainedModel): |
|
config_class = CXRLLAVAConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.tokenizer = transformers.LlamaTokenizer.from_pretrained(config._name_or_path, add_special_tokens=False) |
|
self.tokenizer.pad_token = self.tokenizer.unk_token |
|
self.tokenizer.sep_token = self.tokenizer.unk_token |
|
self.tokenizer.cls_token = self.tokenizer.unk_token |
|
self.tokenizer.mask_token = self.tokenizer.unk_token |
|
|
|
vision_cfg = CLIPVisionCfg(**config.clip_vision_cfg) |
|
|
|
self.generation_config = GenerationConfig.from_pretrained(config._name_or_path) |
|
|
|
vision_heads = vision_cfg.width // vision_cfg.head_width |
|
norm_layer = LayerNorm |
|
act_layer = torch.nn.GELU |
|
if vision_cfg.norm_kwargs: |
|
norm_layer = partial(norm_layer, **vision_cfg.norm_kwargs) |
|
if vision_cfg.act_kwargs is not None: |
|
act_layer = partial(act_layer, **vision_cfg.act_kwargs) |
|
|
|
self.vision_tower = VisionTransformer( |
|
in_channels=1, |
|
image_size=vision_cfg.image_size, |
|
patch_size=vision_cfg.patch_size, |
|
width=vision_cfg.width, |
|
layers=vision_cfg.layers, |
|
heads=vision_heads, |
|
mlp_ratio=vision_cfg.mlp_ratio, |
|
ls_init_value=vision_cfg.ls_init_value, |
|
patch_dropout=vision_cfg.patch_dropout, |
|
attentional_pool=vision_cfg.attentional_pool, |
|
attn_pooler_queries=vision_cfg.attn_pooler_queries, |
|
attn_pooler_heads=vision_cfg.attn_pooler_heads, |
|
pos_embed_type=vision_cfg.pos_embed_type, |
|
no_ln_pre=vision_cfg.no_ln_pre, |
|
final_ln_after_pool=vision_cfg.final_ln_after_pool, |
|
pool_type=vision_cfg.pool_type, |
|
output_tokens=vision_cfg.output_tokens, |
|
output_dim=config.clip_embed_dim, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
) |
|
|
|
self.vision_tower.image_processor = transformers.CLIPImageProcessor( |
|
do_resize=True, |
|
size={'shortest_edge': config.clip_vision_cfg['image_size']}, |
|
resample=True, |
|
do_center_crop=True, |
|
crop_size=config.clip_vision_cfg['image_size'], |
|
do_rescale=True, |
|
rescale_factor=1 / 255, |
|
do_normalize=True, |
|
image_mean=config.image_preprocess_cfg['mean'], |
|
image_std=config.image_preprocess_cfg['std'], |
|
do_convert_rgb=False |
|
) |
|
|
|
def convert_dtype(dtype): |
|
if dtype == 'fp32': |
|
dtype = torch.float32 |
|
elif dtype == 'fp16': |
|
dtype = torch.float16 |
|
elif dtype == 'bf16': |
|
dtype = torch.bfloat16 |
|
else: |
|
raise Exception("Unsupported dtype") |
|
return dtype |
|
|
|
self.clip_cast_dtype = convert_dtype(config.clip_vision_tower_dtype) |
|
self.mm_projector = torch.nn.Linear(config.mm_projector_dim, config.llama['hidden_size']) |
|
self.lm_head = torch.nn.Linear(config.llama.hidden_size, config.llama.vocab_size, bias=False) |
|
self.llama = transformers.LlamaModel(transformers.LlamaConfig(**config.llama)) |
|
|
|
self.llama = self.llama.to(torch.bfloat16) |
|
self.lm_head = self.lm_head.to(torch.bfloat16) |
|
self.vision_tower = self.vision_tower.to(torch.bfloat16) |
|
self.mm_projector = self.mm_projector.to(torch.bfloat16) |
|
|
|
def get_input_embeddings(self): |
|
return self.llama.get_input_embeddings() |
|
|
|
def get_vision_tower(self): |
|
return self.vision_tower |
|
|
|
def gradient_checkpointing_enable(self): |
|
return self.llama.gradient_checkpointing_enable() |
|
|
|
def encode_images(self, images): |
|
images = images.to(torch.bfloat16) |
|
|
|
def _expand_token(token, batch_size: int): |
|
return token.view(1, 1, -1).expand(batch_size, -1, -1) |
|
|
|
|
|
|
|
x = images |
|
x = self.vision_tower.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
|
|
|
|
x = torch.cat([_expand_token(self.vision_tower.class_embedding, x.shape[0]).to(x.dtype), x], dim=1) |
|
|
|
x = x + self.vision_tower.positional_embedding.to(x.dtype) |
|
|
|
x = self.vision_tower.patch_dropout(x) |
|
x = self.vision_tower.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.vision_tower.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
if self.vision_tower.attn_pool is not None: |
|
if self.vision_tower.attn_pool_contrastive is not None: |
|
|
|
x = self.vision_tower.ln_post(x) |
|
tokens = self.vision_tower.attn_pool(x) |
|
if self.vision_tower.attn_pool_type == 'parallel': |
|
pooled = self.vision_tower.attn_pool_contrastive(x) |
|
else: |
|
assert self.vision_tower.attn_pool_type == 'cascade' |
|
pooled = self.vision_tower.attn_pool_contrastive(tokens) |
|
else: |
|
|
|
x = self.vision_tower.attn_pool(x) |
|
x = self.vision_tower.ln_post(x) |
|
pooled, tokens = self.vision_tower._global_pool(x) |
|
elif self.vision_tower.final_ln_after_pool: |
|
pooled, tokens = self.vision_tower._global_pool(x) |
|
pooled = self.vision_tower.ln_post(pooled) |
|
else: |
|
x = self.vision_tower.ln_post(x) |
|
pooled, tokens = self.vision_tower._global_pool(x) |
|
|
|
if self.vision_tower.proj is not None: |
|
pooled = pooled @ self.vision_tower.proj |
|
|
|
image_features = tokens |
|
image_features = image_features.to(torch.bfloat16) |
|
image_features = self.mm_projector(image_features) |
|
|
|
image_features = image_features.to(torch.bfloat16) |
|
return image_features |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, attention_mask, past_key_values, labels, images) |
|
|
|
outputs = self.llama( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
vision_tower = self.vision_tower |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[ |
|
1] == 1: |
|
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), |
|
dtype=attention_mask.dtype, device=attention_mask.device) |
|
return input_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
new_input_embeds = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
cur_input_embeds = self.llama.embed_tokens(cur_input_ids) |
|
cur_input_embeds = cur_input_embeds + (0. * self.mm_projector(vision_tower.dummy_feature)).sum() |
|
new_input_embeds.append(cur_input_embeds) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
cur_new_input_embeds = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
while image_token_indices.numel() > 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
image_token_start = image_token_indices[0] |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', |
|
False): |
|
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids[:image_token_start - 1]).detach()) |
|
cur_new_input_embeds.append( |
|
self.llama.embed_tokens(cur_input_ids[image_token_start - 1:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append( |
|
self.llama.embed_tokens(cur_input_ids[image_token_start + 1:image_token_start + 2])) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append( |
|
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, |
|
dtype=labels.dtype)) |
|
cur_new_labels.append(cur_labels[image_token_start:image_token_start + 1]) |
|
cur_labels = cur_labels[image_token_start + 2:] |
|
else: |
|
|
|
cur_input_ids = cur_input_ids.to(self.llama.device) |
|
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids[:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append( |
|
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, |
|
dtype=labels.dtype)) |
|
cur_labels = cur_labels[image_token_start + 1:] |
|
cur_image_idx += 1 |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', |
|
False): |
|
cur_input_ids = cur_input_ids[image_token_start + 2:] |
|
else: |
|
cur_input_ids = cur_input_ids[image_token_start + 1:] |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
if cur_input_ids.numel() > 0: |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', |
|
False): |
|
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids).detach()) |
|
else: |
|
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids)) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels) |
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, |
|
torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), |
|
dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, |
|
torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, |
|
dtype=cur_new_label.dtype, device=cur_new_label.device)), |
|
dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, |
|
new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, |
|
dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), |
|
False, dtype=attention_mask.dtype, |
|
device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat( |
|
(new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full( |
|
(attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, |
|
dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
|
|
return None, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
|
|
def prepare_inputs_labels_for_multimodal_use_final_vector( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
vision_tower = self.vision_tower |
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[ |
|
1] == 1: |
|
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), |
|
dtype=attention_mask.dtype, device=attention_mask.device) |
|
return input_ids, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
new_input_embeds = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
cur_input_embeds = self.llama.embed_tokens(cur_input_ids) |
|
cur_input_embeds = cur_input_embeds + (0. * self.mm_projector(vision_tower.dummy_feature)).sum() |
|
new_input_embeds.append(cur_input_embeds) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
cur_new_input_embeds = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
while image_token_indices.numel() > 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
image_token_start = image_token_indices[0] |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', |
|
False): |
|
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids[:image_token_start - 1]).detach()) |
|
cur_new_input_embeds.append( |
|
self.llama.embed_tokens(cur_input_ids[image_token_start - 1:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_input_embeds.append( |
|
self.llama.embed_tokens(cur_input_ids[image_token_start + 1:image_token_start + 2])) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append( |
|
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, |
|
dtype=labels.dtype)) |
|
cur_new_labels.append(cur_labels[image_token_start:image_token_start + 1]) |
|
cur_labels = cur_labels[image_token_start + 2:] |
|
else: |
|
cur_new_input_embeds.append( |
|
self.llama.embed_tokens(cur_input_ids[:image_token_start].to(self.device))) |
|
cur_new_input_embeds.append(cur_image_features) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append( |
|
torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, |
|
dtype=labels.dtype)) |
|
cur_labels = cur_labels[image_token_start + 1:] |
|
cur_image_idx += 1 |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', |
|
False): |
|
cur_input_ids = cur_input_ids[image_token_start + 2:] |
|
else: |
|
cur_input_ids = cur_input_ids[image_token_start + 1:] |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
if cur_input_ids.numel() > 0: |
|
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', |
|
False): |
|
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids).detach()) |
|
else: |
|
cur_new_input_embeds.append(self.llama.embed_tokens(cur_input_ids.to(self.device))) |
|
if labels is not None: |
|
|
|
cur_labels = labels[batch_idx] |
|
cur_new_labels.append(cur_labels) |
|
|
|
cur_new_input_embeds[1] = torch.unsqueeze(cur_new_input_embeds[1], dim=0) |
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, |
|
torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), |
|
dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, |
|
torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, |
|
dtype=cur_new_label.dtype, device=cur_new_label.device)), |
|
dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, |
|
new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, |
|
dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), |
|
False, dtype=attention_mask.dtype, |
|
device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat( |
|
(new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full( |
|
(attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, |
|
dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
|
|
return None, attention_mask, past_key_values, new_input_embeds, labels |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
def apply_chat_template(self, chat): |
|
return self.tokenizer.apply_chat_template(chat, tokenize=False) |
|
|
|
def tokenizer_image_token(self, prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == 'pt': |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f'Unsupported tensor type: {return_tensors}') |
|
return input_ids |
|
|
|
def write_radiologic_report(self, image, temperature=0.2, top_p=0.8): |
|
chat = [ |
|
{"role": "system", |
|
"content": "You are a helpful radiologist. Try to interpret chest x ray image and answer to the question that user provides."}, |
|
{"role": "user", |
|
"content": "<image>\nWrite a radiologic report on the given chest radiograph, including information about atelectasis, cardiomegaly, consolidation, pulmonary edema, pleural effusion, and pneumothorax.\n"} |
|
] |
|
response = self.generate_cxr_repsonse(chat=chat,image=image, temperature=temperature, top_p=top_p) |
|
return response |
|
|
|
def write_differential_diagnosis(self, image, temperature=0.2, top_p=0.8): |
|
chat = [ |
|
{"role": "system", |
|
"content": "You are a helpful radiologist. Try to interpret chest x ray image and answer to the question that user provides."}, |
|
{"role": "user", |
|
"content": "<image>\nWhat are the possible differential diagnoses for this patient?\n"} |
|
] |
|
response = self.generate_cxr_repsonse(chat=chat, image=image, temperature=temperature, top_p=top_p) |
|
return response |
|
|
|
def ask_question(self, question, image, temperature=0.2, top_p=0.8): |
|
chat = [ |
|
{"role": "system", |
|
"content": "You are a helpful radiologist. Try to interpret chest x ray image and answer to the question that user provides."}, |
|
{"role": "user", |
|
"content": "<image>\n"+question} |
|
] |
|
response = self.generate_cxr_repsonse(chat=chat, image=image, temperature=temperature, top_p=top_p) |
|
return response |
|
|
|
def generate_cxr_repsonse(self, chat, image, temperature=0.2, top_p=0.8): |
|
with torch.no_grad(): |
|
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=180) |
|
|
|
if np.array(image).max()>255: |
|
raise Exception("16-bit image is not supported.") |
|
|
|
image = image.convert('L') |
|
image = np.array(image) |
|
|
|
if len(image.shape) == 2: |
|
image = np.expand_dims(image,axis=-1) |
|
|
|
prompt = self.apply_chat_template(chat) |
|
images = self.vision_tower.image_processor(image, return_tensors='pt')['pixel_values'] |
|
images = images.to(self.device) |
|
input_ids = self.tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0) |
|
input_ids = input_ids.to(self.device) |
|
|
|
stopping_criteria = KeywordsStoppingCriteria(["</s>"], self.tokenizer, input_ids) |
|
|
|
image_args = {"images": images} |
|
do_sample = True if temperature > 0.001 else False |
|
num_image_tokens = 1 |
|
max_context_length = getattr(self.config, 'max_position_embeddings', 2048) |
|
|
|
max_new_tokens = min(512, max_context_length - input_ids.shape[-1] - num_image_tokens) |
|
thread = Thread(target=self.generate, kwargs=dict( |
|
inputs=input_ids, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_new_tokens=max_new_tokens, |
|
streamer=streamer, |
|
stopping_criteria=[stopping_criteria], |
|
use_cache=True, |
|
generation_config=self.generation_config, |
|
**image_args |
|
)) |
|
thread.start() |
|
generated_text = "" |
|
for new_text in streamer: |
|
generated_text += new_text |
|
|
|
return generated_text |
|
|
|
def tokenizer_image_token(self, prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == 'pt': |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f'Unsupported tensor type: {return_tensors}') |
|
return input_ids |
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" |
|
offset = min(output_ids.shape[1] - self.start_len, 3) |
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] |
|
for keyword_id in self.keyword_ids: |
|
if output_ids[0, -keyword_id.shape[0]:] == keyword_id: |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
@dataclass |
|
class CLIPVisionCfg: |
|
layers: Union[Tuple[int, int, int, int], int] = 12 |
|
width: int = 768 |
|
head_width: int = 64 |
|
mlp_ratio: float = 4.0 |
|
patch_size: int = 16 |
|
image_size: Union[Tuple[int, int], int] = 224 |
|
|
|
ls_init_value: Optional[float] = None |
|
patch_dropout: float = 0. |
|
attentional_pool: bool = False |
|
attn_pooler_queries: int = 256 |
|
attn_pooler_heads: int = 8 |
|
no_ln_pre: bool = False |
|
pos_embed_type: str = 'learnable' |
|
final_ln_after_pool: bool = False |
|
pool_type: str = 'tok' |
|
output_tokens: bool = False |
|
act_kwargs: Optional[dict] = None |
|
norm_kwargs: Optional[dict] = None |
|
|
|
timm_model_name: Optional[str] = None |
|
timm_model_pretrained: bool = False |
|
timm_pool: str = 'avg' |
|
timm_proj: str = 'linear' |
|
timm_proj_bias: bool = False |
|
timm_drop: float = 0. |
|
timm_drop_path: Optional[float] = None |
|
|