jdgalvan's picture
Update handler.py
4911b19 verified
from typing import Dict, List, Any
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
class EndpointHandler():
def __init__(self, path=""):
# Load model directly
model = AutoModelForCausalLM.from_pretrained(
"jdgalvan/Phi-3-mini-128k-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("jdgalvan/Phi-3-mini-128k-instruct")
self.pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
inputs = data.pop("inputs", data)
parameters = data.pop("parameters", None)
# pass inputs with all kwargs in data
if parameters is not None:
prediction = self.pipe(inputs, **parameters)
else:
prediction = self.pipe(inputs)
return prediction