|
from typing import Dict, List, Any |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"jdgalvan/Phi-3-mini-128k-instruct", |
|
device_map="cuda", |
|
torch_dtype="auto", |
|
trust_remote_code=True, |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("jdgalvan/Phi-3-mini-128k-instruct") |
|
|
|
self.pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
if parameters is not None: |
|
prediction = self.pipe(inputs, **parameters) |
|
else: |
|
prediction = self.pipe(inputs) |
|
|
|
return prediction |
|
|