jebish7 commited on
Commit
4b23d86
1 Parent(s): daa1f2f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:29545
11
+ - loss:MultipleNegativesSymmetricRankingLoss
12
+ widget:
13
+ - source_sentence: In terms of audited accounts submission for an Applicant, could
14
+ you clarify the scenarios in which the Regulator might agree that a reviewed pro
15
+ forma statement of financial position is not needed, and what factors would be
16
+ considered in making that determination?
17
+ sentences:
18
+ - "DocumentID: 1 | PassageID: 4.2.1.(3) | Passage: Where the regulator in another\
19
+ \ jurisdiction does not permit the implementation of policies, procedures, systems\
20
+ \ and controls consistent with these Rules, the Relevant Person must:\n(a)\tinform\
21
+ \ the Regulator in writing immediately; and\n(b)\tapply appropriate additional\
22
+ \ measures to manage the money laundering risks posed by the relevant branch or\
23
+ \ subsidiary."
24
+ - "DocumentID: 11 | PassageID: 2.3.15.(4) | Passage: The Applicant must submit to\
25
+ \ the Regulator the following records, as applicable:\n(a)\tAudited accounts,\
26
+ \ for the purposes of this Rule and Rule 2.3.2(1), for the last three full financial\
27
+ \ years, noting that:\n(i)\tif the Applicant applies for admission less than ninety\
28
+ \ days after the end of its last financial year, unless the Applicant has audited\
29
+ \ accounts for its latest full financial year, the accounts may be for the three\
30
+ \ years to the end of the previous financial year, but must also include audited\
31
+ \ or reviewed accounts for its most recent semi-annual financial reporting period;\
32
+ \ and\n(ii)\tif the Applicant applies for admission more than six months and seventy-five\
33
+ \ days after the end of its last financial year, audited or reviewed accounts\
34
+ \ for its most recent semi-annual financial reporting period (or longer period\
35
+ \ if available).\n(b)\tUnless the Regulator agrees it is not needed, a reviewed\
36
+ \ pro forma statement of financial position. The review must be conducted by an\
37
+ \ accredited professional auditor of the company or an independent accountant."
38
+ - 'DocumentID: 36 | PassageID: D.1.3. | Passage: Principle 1 – Oversight and responsibility
39
+ of climate-related financial risk exposures.Certain functions related to the management
40
+ of climate-related financial risks may be delegated, but, as with other risks,
41
+ the board is ultimately responsible and accountable for monitoring, managing and
42
+ overseeing climate-related risks for the financial firm.
43
+
44
+ '
45
+ - source_sentence: A financial institution is interested in multiple designations,
46
+ including the ADGM Green Fund and ADGM Green Bond. For each application, what
47
+ fee will the institution incur?
48
+ sentences:
49
+ - 'DocumentID: 31 | PassageID: 63) | Passage: INITIAL DISCLOSURE OF MATERIAL ESTIMATES.
50
+
51
+ Disclosure of material estimates of Contingent Resources
52
+
53
+ Section 2.3 of the PRMS Guidelines states that Contingent Resources may be assigned
54
+ for Petroleum Projects that are dependent on ‘technology under development’, and
55
+ further recommended that a number of guidelines are followed in order to distinguish
56
+ these estimates from those that should be classified as Unrecoverable Petroleum. By
57
+ way of Rule 12.10.1(3), the FSRA fully supports and requires compliance with what
58
+ is set out in the PRMS Guidelines.
59
+
60
+ '
61
+ - 'DocumentID: 19 | PassageID: 40) | Passage: REGULATORY REQUIREMENTS FOR AUTHORISED
62
+ PERSONS ENGAGED IN REGULATED ACTIVITIES IN RELATION TO VIRTUAL ASSETS
63
+
64
+ Anti-Money Laundering and Countering Financing of Terrorism
65
+
66
+ On 21 June 2019, FATF released a revised Guidance for a Risk-Based Approach (RBA)
67
+ for VAs and VASPs, as well as an Interpretative Note for Recommendation 15. This
68
+ built upon previous FATF statements by clarifying a RBA for Anti-Money Laundering
69
+ and Countering the Financing of Terrorism (“AML/CFT”) purposes. The basic principle
70
+ underlying the FATF Guidelines is that VASPs are expected to “identify, assess,
71
+ and take effective action to mitigate their ML/TF risks” with respect to VAs.
72
+
73
+ '
74
+ - "DocumentID: 4 | PassageID: 10.1.1 | Passage: A Person applying to the Regulator\
75
+ \ for any of the following designations:\n(a)\tADGM Green Fund;\n(b)\tADGM Climate\
76
+ \ Transition Fund;\n(c)\tADGM Green Portfolio;\n(d)\tADGM Climate Transition Portfolio;\n\
77
+ (e)\tADGM Green Bond; or\n(f)\tADGM Sustainability Linked Bond\nmust pay to the\
78
+ \ Regulator an application fee of $2,000."
79
+ - source_sentence: How does the ADGM expect Authorised Persons to incorporate the
80
+ eligibility of collateral types into their overall risk management framework,
81
+ particularly concerning Islamic finance principles?
82
+ sentences:
83
+ - 'DocumentID: 17 | PassageID: Schedule 1.Part 2.Chapter 5.42.(2) | Passage: In
84
+ determining for the purposes of sub-paragraph ‎(1)‎(b) whether Deposits are accepted
85
+ only on particular occasions, regard is to be had to the frequency of those occasions
86
+ and to any characteristics distinguishing them from each other.'
87
+ - "DocumentID: 9 | PassageID: 6.8.5 | Passage: \n(a)\tA Fund Manager of an Islamic\
88
+ \ REIT may obtain financing either directly or through its Special Purpose Vehicle\
89
+ \ up to 65% of the total gross asset value of the Fund provided that such financing\
90
+ \ is provided in a Shari'a-compliant manner.\n(b)\tUpon becoming aware that the\
91
+ \ borrowing limit set out in 6.8.5(a) has been exceeded, the Fund Manager shall:\n\
92
+ (c)\timmediately inform Unitholders and the Regulator of the details of the breach\
93
+ \ and the proposed remedial action;\n(d)\tuse its best endeavours to reduce the\
94
+ \ excess borrowings;\n(e)\tnot permit the Fund to engage in additional borrowing;\
95
+ \ and\n(f)\tinform Unitholders and the Regulator on a regular basis as to the\
96
+ \ progress of the remedial action."
97
+ - 'DocumentID: 9 | PassageID: 5.1.1.Guidance.(ii) | Passage: The prudential Category
98
+ for Islamic Financial Institutions and other Authorised Persons (acting through
99
+ an Islamic Window) undertaking the Regulated Activity of Managing PSIAs (which
100
+ may be either a Restricted PSIA or an Unrestricted PSIA) is determined in accordance
101
+ with PRU Rule 1.3. An Authorised Person which Manages PSIAs (whether as an Islamic
102
+ Financial Institution or through an Islamic Window) must comply with the requirements
103
+ in PRU in relation to specific prudential requirements relating to Trading Book
104
+ and Non-Trading Book activities, including Credit Risk, Market Risk, Liquidity
105
+ Risk and Group Risk.'
106
+ - source_sentence: Can you please detail the specific Anti-Money Laundering (AML)
107
+ and Countering Financing of Terrorism (CFT) measures and controls that our firm
108
+ must have in place when dealing with Spot Commodities as per the FSRA's requirements?
109
+ sentences:
110
+ - 'DocumentID: 34 | PassageID: 65) | Passage: REGULATORY REQUIREMENTS - SPOT COMMODITY
111
+ ACTIVITIES
112
+
113
+ Sanctions
114
+
115
+ Pursuant to AML Rule 11.2.1(1), an Authorised Person must have arrangements in
116
+ place to ensure that only Spot Commodities that are not subject to sanctions or
117
+ associated with an entity in the supply chain that is itself subject to a sanction,
118
+ are used as part of its Regulated Activities, or utilised as part of a delivery
119
+ and/or storage facility operated by itself (or by any third parties it uses). In
120
+ demonstrating compliance with the Rule, an Authorised Person must have powers
121
+ to resolve any breach in a timely fashion, such as taking emergency action itself
122
+ or by compelling the delivery and/or storage facility to take appropriate action. The
123
+ FSRA expects this to include the Authorised Person having the ability to sanction
124
+ a Member, market participant or the delivery and/or storage facility for acts
125
+ or omissions that compromise compliance with applicable sanctions.
126
+
127
+ '
128
+ - "DocumentID: 18 | PassageID: 3.2 | Passage: Financial Services Permissions. VC\
129
+ \ Managers operating in ADGM require a Financial Services Permission (“FSP”) to\
130
+ \ undertake any Regulated Activity pertaining to VC Funds and/or co-investments\
131
+ \ by third parties in VC Funds. The Regulated Activities covered by the FSP will\
132
+ \ be dependent on the VC Managers’ investment strategy and business model.\n(a)\t\
133
+ Managing a Collective Investment Fund: this includes carrying out fund management\
134
+ \ activities in respect of a VC Fund.\n(b)\tAdvising on Investments or Credit\
135
+ \ : for VC Managers these activities will be restricted to activities related\
136
+ \ to co-investment alongside a VC Fund which the VC Manager manages, such as recommending\
137
+ \ that a client invest in an investee company alongside the VC Fund and on the\
138
+ \ strategy and structure required to make the investment.\n(c)\tArranging Deals\
139
+ \ in Investments: VC Managers may also wish to make arrangements to facilitate\
140
+ \ co-investments in the investee company.\nAuthorisation fees and supervision\
141
+ \ fees for a VC Manager are capped at USD 10,000 regardless of whether one or\
142
+ \ both of the additional Regulated Activities in b) and c) above in relation to\
143
+ \ co-investments are included in its FSP. The FSP will include restrictions appropriate\
144
+ \ to the business model of a VC Manager."
145
+ - 'DocumentID: 24 | PassageID: 3.9 | Passage: Principle 2 – High Standards for Authorisation.
146
+ This discerning approach is shown by the FSRA’s power to only permit VAs that
147
+ it deems ‘acceptable’, as determined by risk factors such as security and traceability,
148
+ in order to prevent the build-up of risk from illiquid or immature assets. Additionally,
149
+ we do not permit stablecoins based on the algorithmic model of valuation to the
150
+ underlying fiat currency.'
151
+ - source_sentence: What are the common scenarios or instances where assets and liabilities
152
+ are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer
153
+ address these in their reporting?
154
+ sentences:
155
+ - 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are
156
+ reminded that in accordance with Federal AML Legislation, Relevant Persons or
157
+ any of their Employees must not tip off any Person, that is, inform any Person
158
+ that he is being scrutinised, or investigated by any other competent authority,
159
+ for possible involvement in suspicious Transactions or activity related to money
160
+ laundering or terrorist financing.'
161
+ - "DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided\
162
+ \ in this Chapter relate to the following:\na.\tspecific Rules in respect of certain\
163
+ \ assets and liabilities, intended to achieve a regulatory objective not achieved\
164
+ \ by application of either or both of the bases of accounting set out in Rule\
165
+ \ ‎5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both\
166
+ \ of the bases of accounting set out in Rule ‎5.3.2; and\nc.\tthe overriding power\
167
+ \ of the Regulator, set out in Rule ‎5.1.6, to require an Insurer to adopt a particular\
168
+ \ measurement for a specific asset or liability."
169
+ - 'DocumentID: 1 | PassageID: 6.2.1.Guidance.2. | Passage: The risk assessment under
170
+ Rule ‎6.2.1(c) should identify actions to mitigate risks associated with undertaking
171
+ NFTF business generally, and the use of eKYC specifically. This is because distinct
172
+ risks are often likely to arise where business is conducted entirely in an NFTF
173
+ manner, compared to when the business relationship includes a mix of face-to-face
174
+ and NFTF interactions. The assessment should make reference to risk mitigation
175
+ measures recommended by the Regulator, a competent authority of the U.A.E., FATF,
176
+ and other relevant bodies.
177
+
178
+
179
+ '
180
+ ---
181
+
182
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
183
+
184
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
185
+
186
+ ## Model Details
187
+
188
+ ### Model Description
189
+ - **Model Type:** Sentence Transformer
190
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
191
+ - **Maximum Sequence Length:** 512 tokens
192
+ - **Output Dimensionality:** 384 tokens
193
+ - **Similarity Function:** Cosine Similarity
194
+ - **Training Dataset:**
195
+ - csv
196
+ <!-- - **Language:** Unknown -->
197
+ <!-- - **License:** Unknown -->
198
+
199
+ ### Model Sources
200
+
201
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
202
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
203
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
204
+
205
+ ### Full Model Architecture
206
+
207
+ ```
208
+ SentenceTransformer(
209
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
210
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
211
+ (2): Normalize()
212
+ )
213
+ ```
214
+
215
+ ## Usage
216
+
217
+ ### Direct Usage (Sentence Transformers)
218
+
219
+ First install the Sentence Transformers library:
220
+
221
+ ```bash
222
+ pip install -U sentence-transformers
223
+ ```
224
+
225
+ Then you can load this model and run inference.
226
+ ```python
227
+ from sentence_transformers import SentenceTransformer
228
+
229
+ # Download from the 🤗 Hub
230
+ model = SentenceTransformer("jebish7/bge-small-en-v1.5_MNSR_5")
231
+ # Run inference
232
+ sentences = [
233
+ 'What are the common scenarios or instances where assets and liabilities are not covered by the bases of accounting in Rule 5.3.2, and how should an Insurer address these in their reporting?',
234
+ 'DocumentID: 12 | PassageID: 5.3.1.Guidance | Passage: \nThe exceptions provided in this Chapter relate to the following:\na.\tspecific Rules in respect of certain assets and liabilities, intended to achieve a regulatory objective not achieved by application of either or both of the bases of accounting set out in Rule \u200e5.3.2;\nb.\tassets and liabilities that are not dealt with in either or both of the bases of accounting set out in Rule \u200e5.3.2; and\nc.\tthe overriding power of the Regulator, set out in Rule \u200e5.1.6, to require an Insurer to adopt a particular measurement for a specific asset or liability.',
235
+ 'DocumentID: 1 | PassageID: 14.4.1.Guidance.1. | Passage: Relevant Persons are reminded that in accordance with Federal AML Legislation, Relevant Persons or any of their Employees must not tip off any Person, that is, inform any Person that he is being scrutinised, or investigated by any other competent authority, for possible involvement in suspicious Transactions or activity related to money laundering or terrorist financing.',
236
+ ]
237
+ embeddings = model.encode(sentences)
238
+ print(embeddings.shape)
239
+ # [3, 384]
240
+
241
+ # Get the similarity scores for the embeddings
242
+ similarities = model.similarity(embeddings, embeddings)
243
+ print(similarities.shape)
244
+ # [3, 3]
245
+ ```
246
+
247
+ <!--
248
+ ### Direct Usage (Transformers)
249
+
250
+ <details><summary>Click to see the direct usage in Transformers</summary>
251
+
252
+ </details>
253
+ -->
254
+
255
+ <!--
256
+ ### Downstream Usage (Sentence Transformers)
257
+
258
+ You can finetune this model on your own dataset.
259
+
260
+ <details><summary>Click to expand</summary>
261
+
262
+ </details>
263
+ -->
264
+
265
+ <!--
266
+ ### Out-of-Scope Use
267
+
268
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
269
+ -->
270
+
271
+ <!--
272
+ ## Bias, Risks and Limitations
273
+
274
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
275
+ -->
276
+
277
+ <!--
278
+ ### Recommendations
279
+
280
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
281
+ -->
282
+
283
+ ## Training Details
284
+
285
+ ### Training Dataset
286
+
287
+ #### csv
288
+
289
+ * Dataset: csv
290
+ * Size: 29,545 training samples
291
+ * Columns: <code>anchor</code> and <code>positive</code>
292
+ * Approximate statistics based on the first 1000 samples:
293
+ | | anchor | positive |
294
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
295
+ | type | string | string |
296
+ | details | <ul><li>min: 16 tokens</li><li>mean: 34.95 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 35 tokens</li><li>mean: 132.0 tokens</li><li>max: 512 tokens</li></ul> |
297
+ * Samples:
298
+ | anchor | positive |
299
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
300
+ | <code>If a financial institution offers Money Remittance as one of its services, under what circumstances is it deemed to be holding Relevant Money and therefore subject to regulatory compliance (a)?</code> | <code>DocumentID: 13 | PassageID: 3.7.1.Guidance.1. | Passage: An Authorised Person is considered to be holding Relevant Money and subject to (a) where it offers Payment Services alongside currency exchange or Money Remittance.<br></code> |
301
+ | <code>What are the consequences for a Recognised Body or Authorised Person if they fail to comply with ADGM's requirements regarding severance payments?</code> | <code>DocumentID: 7 | PassageID: APP1.A1.2.Guidance.9. | Passage: Severance payments. Where an Authorised Person or Recognised Body provides discretionary payouts on termination of employment ("severance payments", also called "golden parachutes"), such payment should generally be subject to appropriate limits or shareholder approval. In any case, such payouts should be aligned with the Authorised Person or Recognised Body's overall financial condition and performance over an appropriate time horizon and should not be payable in the case of failure or threatened failure of the Authorised Person or Recognised Body, particularly to an individual whose actions may have contributed to the failure or potential failure of the Authorised Person or Recognised Body.<br></code> |
302
+ | <code>If a Public Fund is structured as an Investment Trust, to whom should the Fund Manager report the review findings regarding delegated Regulated Activities or outsourced functions?</code> | <code>DocumentID: 6 | PassageID: PART 5.12.12.8.(1) | Passage: A Fund Manager or the Trustee of a Public Fund, which has delegated any Regulated Activities or outsourced any functions, must conduct a review of the carrying out of the relevant activities or functions by the Service Provider and present the findings of the review to either:<br>(a) the Fund's Governing Body every 6 months at the Fund's board meeting; or<br>(b) in the case of a Fund structured as an Investment Trust, to the Trustee.</code> |
303
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
304
+ ```json
305
+ {
306
+ "scale": 20.0,
307
+ "similarity_fct": "cos_sim"
308
+ }
309
+ ```
310
+
311
+ ### Training Hyperparameters
312
+ #### Non-Default Hyperparameters
313
+
314
+ - `per_device_train_batch_size`: 32
315
+ - `learning_rate`: 2e-05
316
+ - `warmup_ratio`: 0.1
317
+ - `batch_sampler`: no_duplicates
318
+
319
+ #### All Hyperparameters
320
+ <details><summary>Click to expand</summary>
321
+
322
+ - `overwrite_output_dir`: False
323
+ - `do_predict`: False
324
+ - `eval_strategy`: no
325
+ - `prediction_loss_only`: True
326
+ - `per_device_train_batch_size`: 32
327
+ - `per_device_eval_batch_size`: 8
328
+ - `per_gpu_train_batch_size`: None
329
+ - `per_gpu_eval_batch_size`: None
330
+ - `gradient_accumulation_steps`: 1
331
+ - `eval_accumulation_steps`: None
332
+ - `torch_empty_cache_steps`: None
333
+ - `learning_rate`: 2e-05
334
+ - `weight_decay`: 0.0
335
+ - `adam_beta1`: 0.9
336
+ - `adam_beta2`: 0.999
337
+ - `adam_epsilon`: 1e-08
338
+ - `max_grad_norm`: 1.0
339
+ - `num_train_epochs`: 3
340
+ - `max_steps`: -1
341
+ - `lr_scheduler_type`: linear
342
+ - `lr_scheduler_kwargs`: {}
343
+ - `warmup_ratio`: 0.1
344
+ - `warmup_steps`: 0
345
+ - `log_level`: passive
346
+ - `log_level_replica`: warning
347
+ - `log_on_each_node`: True
348
+ - `logging_nan_inf_filter`: True
349
+ - `save_safetensors`: True
350
+ - `save_on_each_node`: False
351
+ - `save_only_model`: False
352
+ - `restore_callback_states_from_checkpoint`: False
353
+ - `no_cuda`: False
354
+ - `use_cpu`: False
355
+ - `use_mps_device`: False
356
+ - `seed`: 42
357
+ - `data_seed`: None
358
+ - `jit_mode_eval`: False
359
+ - `use_ipex`: False
360
+ - `bf16`: False
361
+ - `fp16`: False
362
+ - `fp16_opt_level`: O1
363
+ - `half_precision_backend`: auto
364
+ - `bf16_full_eval`: False
365
+ - `fp16_full_eval`: False
366
+ - `tf32`: None
367
+ - `local_rank`: 0
368
+ - `ddp_backend`: None
369
+ - `tpu_num_cores`: None
370
+ - `tpu_metrics_debug`: False
371
+ - `debug`: []
372
+ - `dataloader_drop_last`: False
373
+ - `dataloader_num_workers`: 0
374
+ - `dataloader_prefetch_factor`: None
375
+ - `past_index`: -1
376
+ - `disable_tqdm`: False
377
+ - `remove_unused_columns`: True
378
+ - `label_names`: None
379
+ - `load_best_model_at_end`: False
380
+ - `ignore_data_skip`: False
381
+ - `fsdp`: []
382
+ - `fsdp_min_num_params`: 0
383
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
384
+ - `fsdp_transformer_layer_cls_to_wrap`: None
385
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
386
+ - `deepspeed`: None
387
+ - `label_smoothing_factor`: 0.0
388
+ - `optim`: adamw_torch
389
+ - `optim_args`: None
390
+ - `adafactor`: False
391
+ - `group_by_length`: False
392
+ - `length_column_name`: length
393
+ - `ddp_find_unused_parameters`: None
394
+ - `ddp_bucket_cap_mb`: None
395
+ - `ddp_broadcast_buffers`: False
396
+ - `dataloader_pin_memory`: True
397
+ - `dataloader_persistent_workers`: False
398
+ - `skip_memory_metrics`: True
399
+ - `use_legacy_prediction_loop`: False
400
+ - `push_to_hub`: False
401
+ - `resume_from_checkpoint`: None
402
+ - `hub_model_id`: None
403
+ - `hub_strategy`: every_save
404
+ - `hub_private_repo`: False
405
+ - `hub_always_push`: False
406
+ - `gradient_checkpointing`: False
407
+ - `gradient_checkpointing_kwargs`: None
408
+ - `include_inputs_for_metrics`: False
409
+ - `eval_do_concat_batches`: True
410
+ - `fp16_backend`: auto
411
+ - `push_to_hub_model_id`: None
412
+ - `push_to_hub_organization`: None
413
+ - `mp_parameters`:
414
+ - `auto_find_batch_size`: False
415
+ - `full_determinism`: False
416
+ - `torchdynamo`: None
417
+ - `ray_scope`: last
418
+ - `ddp_timeout`: 1800
419
+ - `torch_compile`: False
420
+ - `torch_compile_backend`: None
421
+ - `torch_compile_mode`: None
422
+ - `dispatch_batches`: None
423
+ - `split_batches`: None
424
+ - `include_tokens_per_second`: False
425
+ - `include_num_input_tokens_seen`: False
426
+ - `neftune_noise_alpha`: None
427
+ - `optim_target_modules`: None
428
+ - `batch_eval_metrics`: False
429
+ - `eval_on_start`: False
430
+ - `use_liger_kernel`: False
431
+ - `eval_use_gather_object`: False
432
+ - `batch_sampler`: no_duplicates
433
+ - `multi_dataset_batch_sampler`: proportional
434
+
435
+ </details>
436
+
437
+ ### Training Logs
438
+ | Epoch | Step | Training Loss |
439
+ |:------:|:----:|:-------------:|
440
+ | 0.2165 | 100 | 1.4357 |
441
+ | 0.4329 | 200 | 0.9589 |
442
+ | 0.6494 | 300 | 0.9193 |
443
+ | 0.8658 | 400 | 0.8542 |
444
+ | 1.0823 | 500 | 0.8643 |
445
+ | 1.2987 | 600 | 0.8135 |
446
+ | 1.5152 | 700 | 0.7658 |
447
+ | 1.7316 | 800 | 0.7454 |
448
+ | 1.9481 | 900 | 0.7477 |
449
+ | 2.1645 | 1000 | 0.7586 |
450
+ | 2.3810 | 1100 | 0.6978 |
451
+ | 2.5974 | 1200 | 0.7152 |
452
+ | 2.8139 | 1300 | 0.6866 |
453
+
454
+
455
+ ### Framework Versions
456
+ - Python: 3.10.14
457
+ - Sentence Transformers: 3.1.1
458
+ - Transformers: 4.45.2
459
+ - PyTorch: 2.4.0
460
+ - Accelerate: 0.34.2
461
+ - Datasets: 3.0.1
462
+ - Tokenizers: 0.20.0
463
+
464
+ ## Citation
465
+
466
+ ### BibTeX
467
+
468
+ #### Sentence Transformers
469
+ ```bibtex
470
+ @inproceedings{reimers-2019-sentence-bert,
471
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
472
+ author = "Reimers, Nils and Gurevych, Iryna",
473
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
474
+ month = "11",
475
+ year = "2019",
476
+ publisher = "Association for Computational Linguistics",
477
+ url = "https://arxiv.org/abs/1908.10084",
478
+ }
479
+ ```
480
+
481
+ <!--
482
+ ## Glossary
483
+
484
+ *Clearly define terms in order to be accessible across audiences.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Authors
489
+
490
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
491
+ -->
492
+
493
+ <!--
494
+ ## Model Card Contact
495
+
496
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
497
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5913c53d25539c364d3638df9369c28bed106574c5ff1ec2a238146d38c6825e
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff