Lunar Lander Second Agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +16 -16
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 206.72 +/- 58.57
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b94cde170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b94cde200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b94cde290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b94cde320>", "_build": "<function ActorCriticPolicy._build at 0x7f5b94cde3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5b94cde440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b94cde4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5b94cde560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b94cde5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b94cde680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b94cde710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5b94cb0330>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652022739.8648748, "learning_rate": 0.0002, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGaU+7w836s/keanvlXDor40tY08BfOXvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI51Hxf0djbUCUhpRSlIwBbJRNSwGMAXSUR0CgRNpqZc9odX2UKGgGaAloD0MIvhdftEffbUCUhpRSlGgVTUkBaBZHQKBF5olD4QB1fZQoaAZoCWgPQwijWkQUk+FwQJSGlFKUaBVNZAFoFkdAoEepOBUaQ3V9lChoBmgJaA9DCFTJAFBF3G5AlIaUUpRoFU04AWgWR0CgSKX/YJ3QdX2UKGgGaAloD0MI5WN3gdK0cECUhpRSlGgVTVkBaBZHQKBJpkDIRyx1fZQoaAZoCWgPQwjLun8sxL9vQJSGlFKUaBVNSgFoFkdAoEtD0xubZ3V9lChoBmgJaA9DCA5LAz/qcnBAlIaUUpRoFU1bAWgWR0CgTFAP/aQFdX2UKGgGaAloD0MI4Q1pVODybUCUhpRSlGgVTUUBaBZHQKBNRGsmv4d1fZQoaAZoCWgPQwhbI4Jx8GNwQJSGlFKUaBVNNQFoFkdAoE7UMoc7yXV9lChoBmgJaA9DCJgW9UnuHm9AlIaUUpRoFU1kAWgWR0CgT+uAI6bOdX2UKGgGaAloD0MIkDAMWPKja0CUhpRSlGgVTUoBaBZHQKBQ6K4QSSN1fZQoaAZoCWgPQwhrYKsEi1tyQJSGlFKUaBVNSAFoFkdAoFJ4lF+d9XV9lChoBmgJaA9DCCaN0ToqVXJAlIaUUpRoFU1HAWgWR0CgU4keZG8VdX2UKGgGaAloD0MIX9Gt1/SDbUCUhpRSlGgVTScBaBZHQKBUeavRqoJ1fZQoaAZoCWgPQwj1g7pIIXdwQJSGlFKUaBVNNQFoFkdAoFYKCrcTJ3V9lChoBmgJaA9DCMCUgQPaOnJAlIaUUpRoFU1XAWgWR0CgVxD28IzFdX2UKGgGaAloD0MIPUZ55uVrX0CUhpRSlGgVTegDaBZHQKBbKJgsshB1fZQoaAZoCWgPQwhF8L+VrOBwQJSGlFKUaBVNSgFoFkdAoFwm7OE/S3V9lChoBmgJaA9DCB9kWTDxEXBAlIaUUpRoFU05AWgWR0CgXRy+QEIPdX2UKGgGaAloD0MICmR2Fj2Lb0CUhpRSlGgVTVQBaBZHQKBeuDjBEa51fZQoaAZoCWgPQwhQpzy6Ud1wQJSGlFKUaBVNNwFoFkdAoF+tloUSI3V9lChoBmgJaA9DCO55/rRRQW9AlIaUUpRoFU1gAWgWR0CgYMNI9TxYdX2UKGgGaAloD0MIUaIljycLcUCUhpRSlGgVTVsBaBZHQKBigJlar3l1fZQoaAZoCWgPQwg10eejjNxvQJSGlFKUaBVNgQFoFkdAoGOrUNKAa3V9lChoBmgJaA9DCJesinCTp2tAlIaUUpRoFU3IA2gWR0CgZ+PVNHpbdX2UKGgGaAloD0MIuVFkraFucUCUhpRSlGgVTV4BaBZHQKBo63uuzQh1fZQoaAZoCWgPQwhksOJU6+RsQJSGlFKUaBVNPgFoFkdAoGqKJGe+VXV9lChoBmgJaA9DCN+mP/sRyG5AlIaUUpRoFU1BAWgWR0Cga5foicG1dX2UKGgGaAloD0MInYAmwgajbUCUhpRSlGgVTVYBaBZHQKBsqR3/xUh1fZQoaAZoCWgPQwhlARO49RxxQJSGlFKUaBVNOAFoFkdAoG4yV8kUsXV9lChoBmgJaA9DCExTBDg9zHBAlIaUUpRoFU13AWgWR0Cgb1vtD2J0dX2UKGgGaAloD0MIxw+VRkxybUCUhpRSlGgVTUUBaBZHQKBwYTSLIgh1fZQoaAZoCWgPQwhdqPxrefRvQJSGlFKUaBVNWAFoFkdAoHIQSrYGuHV9lChoBmgJaA9DCAte9BXkNHBAlIaUUpRoFU1OAWgWR0CgcxmZNO/MdX2UKGgGaAloD0MI2ZYBZykmcUCUhpRSlGgVTUABaBZHQKB0CPnSv1V1fZQoaAZoCWgPQwgKTKd1G89rQJSGlFKUaBVNPQFoFkdAoHWeL9/BnHV9lChoBmgJaA9DCCb752nAnm5AlIaUUpRoFU1oAWgWR0CgdsVb7j1gdX2UKGgGaAloD0MIOV/svfjIcECUhpRSlGgVTXEBaBZHQKB38Vu76Hl1fZQoaAZoCWgPQwivJ7oufIlvQJSGlFKUaBVNiAFoFkdAoHnOe4Cp33V9lChoBmgJaA9DCJwxzAlaQG1AlIaUUpRoFU1pAWgWR0CgeudJjDsMdX2UKGgGaAloD0MIufscH22icECUhpRSlGgVTWQBaBZHQKB8Gi7Ciyp1fZQoaAZoCWgPQwiCqWbWUhljQJSGlFKUaBVN6ANoFkdAoIBn+4smOXV9lChoBmgJaA9DCKRRgZNtHWFAlIaUUpRoFU3oA2gWR0CghIjWK/EgdX2UKGgGaAloD0MImZzaGeYocUCUhpRSlGgVTX4BaBZHQKCGZTHbRF91fZQoaAZoCWgPQwjU0XE1shttQJSGlFKUaBVNRAFoFkdAoIdjJr+HanV9lChoBmgJaA9DCJYKKqo+XHBAlIaUUpRoFU1YAWgWR0CgiHC9Zid8dX2UKGgGaAloD0MI+1dWmpTgbUCUhpRSlGgVTWYBaBZHQKCKIWa+evp1fZQoaAZoCWgPQwjzdoTTAi5vQJSGlFKUaBVNbQFoFkdAoIs+EXcgyXV9lChoBmgJaA9DCGfxYmHIuXJAlIaUUpRoFU2TAWgWR0CgjRX8GcFydX2UKGgGaAloD0MIexAC8iVGckCUhpRSlGgVTYEBaBZHQKCOLGaQV9F1fZQoaAZoCWgPQwgf2zLgLMdtQJSGlFKUaBVNbAFoFkdAoI9H3L3bmHV9lChoBmgJaA9DCAjNrnuraW1AlIaUUpRoFU1kAWgWR0CgkSVVghKUdX2UKGgGaAloD0MIF4GxvsEIcECUhpRSlGgVTYIBaBZHQKCSbGDtgKF1fZQoaAZoCWgPQwi05PG0PJVxQJSGlFKUaBVNbQFoFkdAoJOyHXVbzXV9lChoBmgJaA9DCJ57D5ecUGtAlIaUUpRoFU18AWgWR0CglZTzundgdX2UKGgGaAloD0MIZCR7hBrDb0CUhpRSlGgVTUoBaBZHQKCWmQyRB/t1fZQoaAZoCWgPQwg5fxMKkTVxQJSGlFKUaBVNlwFoFkdAoJfdgF5fMXV9lChoBmgJaA9DCDrrU47JSWxAlIaUUpRoFU16AWgWR0Cgmbx0lqrSdX2UKGgGaAloD0MIL90kBkGRcUCUhpRSlGgVTXUBaBZHQKCa7mCAc1h1fZQoaAZoCWgPQwgXuaere4pwQJSGlFKUaBVNmAFoFkdAoJzXYraufXV9lChoBmgJaA9DCBf03hgCG2lAlIaUUpRoFU1yAWgWR0Cgng9Y4hlldX2UKGgGaAloD0MI83NDU3aBbECUhpRSlGgVTXkBaBZHQKCfQHC4z8B1fZQoaAZoCWgPQwgGnRA6qCFwQJSGlFKUaBVNegFoFkdAoKEWs3hn8XV9lChoBmgJaA9DCC3r/rGQ2W1AlIaUUpRoFU1uAWgWR0Cgokyde6ZqdX2UKGgGaAloD0MIaoXpe43pakCUhpRSlGgVTW0BaBZHQKCjbuSfUWl1fZQoaAZoCWgPQwhbJsPx/ABuQJSGlFKUaBVNjgFoFkdAoKVWLHdXT3V9lChoBmgJaA9DCBIu5BFcrW5AlIaUUpRoFU2AAWgWR0Cgpqb/GVAzdX2UKGgGaAloD0MI3JvfMFGYbUCUhpRSlGgVTV0BaBZHQKCnxnWattB1fZQoaAZoCWgPQwiBCkeQCiZwQJSGlFKUaBVNZwFoFkdAoKmA3vQWvnV9lChoBmgJaA9DCA+byMzFnXBAlIaUUpRoFU1kAWgWR0CgqpGVqveQdX2UKGgGaAloD0MIBJFFmnj7a0CUhpRSlGgVTYcBaBZHQKCsdhttQ9B1fZQoaAZoCWgPQwiq04GsJ4dxQJSGlFKUaBVNhwFoFkdAoK3QEjgQ6XV9lChoBmgJaA9DCHh6pSzDYm1AlIaUUpRoFU1iAWgWR0Cgrv2ykbgkdX2UKGgGaAloD0MIshNeglPDakCUhpRSlGgVTWkBaBZHQKCwsksSTQp1fZQoaAZoCWgPQwiuLNFZ5tlwQJSGlFKUaBVNgQFoFkdAoLHlfAsTWXV9lChoBmgJaA9DCKSNI9bil3BAlIaUUpRoFU1mAWgWR0Cgsv8QyylfdX2UKGgGaAloD0MIqWvtfSoEa0CUhpRSlGgVTWEBaBZHQKC0zQ7cO9Z1fZQoaAZoCWgPQwh15bM8jwxuQJSGlFKUaBVNigFoFkdAoLYsGLUCrHV9lChoBmgJaA9DCNifxOdOCG5AlIaUUpRoFU1WAWgWR0Cgt1HLzPKMdX2UKGgGaAloD0MIWqFI97MqcUCUhpRSlGgVTV8BaBZHQKC5C9Iwudx1fZQoaAZoCWgPQwgkJT0MrVZtQJSGlFKUaBVNSQFoFkdAoLoHkaMrE3V9lChoBmgJaA9DCIbI6es5x3BAlIaUUpRoFU1YAWgWR0Cguwp/PPcBdX2UKGgGaAloD0MI1JrmHadQXUCUhpRSlGgVTegDaBZHQKC/Uw0O3Dx1fZQoaAZoCWgPQwhzoIfatsFwQJSGlFKUaBVNaAFoFkdAoMERUipvP3V9lChoBmgJaA9DCMrBbAIMwWxAlIaUUpRoFU1AAWgWR0CgwhYACGN8dX2UKGgGaAloD0MIDXIXYYqba0CUhpRSlGgVTVsBaBZHQKDDMXXRPXV1fZQoaAZoCWgPQwiWl/xPfvhvQJSGlFKUaBVNXAFoFkdAoMTYPkJa7nV9lChoBmgJaA9DCKhRSDLrBnBAlIaUUpRoFU1cAWgWR0Cgxe4smOU/dX2UKGgGaAloD0MIZvZ5jPLFb0CUhpRSlGgVTVIBaBZHQKDHBA8jiXJ1fZQoaAZoCWgPQwimJyzxwL5xQJSGlFKUaBVNogFoFkdAoMjd4TsY23V9lChoBmgJaA9DCOxQTUmWWHFAlIaUUpRoFU2OAWgWR0Cgyh5Ukv9MdX2UKGgGaAloD0MIEYqtoGnFY0CUhpRSlGgVTegDaBZHQKDONEwWWQh1fZQoaAZoCWgPQwhCXaRQlrBwQJSGlFKUaBVNMgFoFkdAoM8gikfs/3V9lChoBmgJaA9DCOeqeY5IoHBAlIaUUpRoFU1dAWgWR0Cg0MmICU5ddX2UKGgGaAloD0MIjINLx5wFb0CUhpRSlGgVTVIBaBZHQKDR1gk1Muh1fZQoaAZoCWgPQwhoXDgQEvxuQJSGlFKUaBVNjQFoFkdAoNPLGNrCWXV9lChoBmgJaA9DCBrba0Gvo3FAlIaUUpRoFU1EAWgWR0Cg1MkqlP8AdX2UKGgGaAloD0MI64uEthyRbUCUhpRSlGgVTUUBaBZHQKDVz8rI5o51fZQoaAZoCWgPQwifIRyzbBZtQJSGlFKUaBVNVAFoFkdAoNd3hddE9nV9lChoBmgJaA9DCNhhTPp7kV5AlIaUUpRoFU3oA2gWR0Cg22JLM9r5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb9006fb050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9006fb0e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb9006fb170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9006fb200>", "_build": "<function ActorCriticPolicy._build at 0x7fb9006fb290>", "forward": "<function ActorCriticPolicy.forward at 0x7fb9006fb320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb9006fb3b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb9006fb440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb9006fb4d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9006fb560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb9006fb5f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb9007540f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652039288.2866619, "learning_rate": 0.0002, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbjID656VU+z2ShvVerWL7O9FI81nE5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKCob1lRqVkCUhpRSlIwBbJRN6AOMAXSUR0ChD6SnLq2SdX2UKGgGaAloD0MIwcdgxanUYUCUhpRSlGgVTegDaBZHQKEUUNlyzX11fZQoaAZoCWgPQwiM+E7MemFgQJSGlFKUaBVN6ANoFkdAoRnI6QvHtHV9lChoBmgJaA9DCKd5xym6mmxAlIaUUpRoFU2UA2gWR0ChHm6vaDf4dX2UKGgGaAloD0MILZljeVdkV0CUhpRSlGgVTegDaBZHQKEjTrKNhmZ1fZQoaAZoCWgPQwg74LpiRhlbQJSGlFKUaBVN6ANoFkdAoSkqCaqjrXV9lChoBmgJaA9DCF8n9WXpp2dAlIaUUpRoFU2jAmgWR0ChLE5mAbyZdX2UKGgGaAloD0MI8P0N2isXYECUhpRSlGgVTegDaBZHQKEw2e2/i5x1fZQoaAZoCWgPQwgWFAZlGpRdQJSGlFKUaBVN6ANoFkdAoTWd4HHFP3V9lChoBmgJaA9DCLtDigESxlxAlIaUUpRoFU3oA2gWR0ChOvtGViWndX2UKGgGaAloD0MIu0IfLGNjW0CUhpRSlGgVTegDaBZHQKE/laiblRx1fZQoaAZoCWgPQwjNdoU+WNthQJSGlFKUaBVN6ANoFkdAoUWH0Zm7KHV9lChoBmgJaA9DCLwi+N9KYjPAlIaUUpRoFU2QAWgWR0ChRupg9eQddX2UKGgGaAloD0MINgTHZdyuQECUhpRSlGgVS/5oFkdAoUhDJEH+qHV9lChoBmgJaA9DCPZCAdvBT1xAlIaUUpRoFU3oA2gWR0ChTkkcjqwAdX2UKGgGaAloD0MIuOaO/peAXECUhpRSlGgVTegDaBZHQKFTfZM+NcZ1fZQoaAZoCWgPQwgX83NDUzVbQJSGlFKUaBVN6ANoFkdAoVilBWxQi3V9lChoBmgJaA9DCMegE0IHklJAlIaUUpRoFU3oA2gWR0ChXjqXv6TGdX2UKGgGaAloD0MIERlW8UY3WUCUhpRSlGgVTegDaBZHQKFjr1EmY0F1fZQoaAZoCWgPQwjUfQBSm89nQJSGlFKUaBVNiQFoFkdAoWUV27nPmnV9lChoBmgJaA9DCOOkMO9xHi7AlIaUUpRoFU1CAWgWR0ChZiawMYuTdX2UKGgGaAloD0MI7lutE5cbM8CUhpRSlGgVS7ZoFkdAoWaw5HVf/nV9lChoBmgJaA9DCJRNucK7VlZAlIaUUpRoFU3oA2gWR0ChbFuqNp/PdX2UKGgGaAloD0MIs++K4H9TI0CUhpRSlGgVS/1oFkdAoW2/acqe9XV9lChoBmgJaA9DCP5g4Ln3TFxAlIaUUpRoFU3oA2gWR0ChczIJAt4BdX2UKGgGaAloD0MIZtmTwGZWYECUhpRSlGgVTegDaBZHQKF4QJ3PiUB1fZQoaAZoCWgPQwiN1Hsqp1FVQJSGlFKUaBVN6ANoFkdAoX2YwGnn+3V9lChoBmgJaA9DCHZtb7ck9yZAlIaUUpRoFUu4aBZHQKF+G3cYZVJ1fZQoaAZoCWgPQwhV3SObq1I6wJSGlFKUaBVNCQFoFkdAoX7pzmwJPnV9lChoBmgJaA9DCKlpF9PMX2FAlIaUUpRoFU3oA2gWR0Chg6jn3cpLdX2UKGgGaAloD0MIhGHAkqtGXUCUhpRSlGgVTegDaBZHQKGJwjXWe6J1fZQoaAZoCWgPQwiefHpsy+grwJSGlFKUaBVNDwFoFkdAoYqJHd43WHV9lChoBmgJaA9DCKc7Tzxnrl9AlIaUUpRoFU3oA2gWR0ChjvUW/JvHdX2UKGgGaAloD0MIXDtREhJpwz+UhpRSlGgVTQYBaBZHQKGPw26TW5J1fZQoaAZoCWgPQwjl795RY8oqQJSGlFKUaBVNmAFoFkdAoZGuWQfZEnV9lChoBmgJaA9DCAvuBzwwtVtAlIaUUpRoFU3oA2gWR0Chll7m+0w8dX2UKGgGaAloD0MIQMIwYMmUYECUhpRSlGgVTegDaBZHQKGb1557gKp1fZQoaAZoCWgPQwgrvqHw2UtfQJSGlFKUaBVN6ANoFkdAoaCLw8W9DnV9lChoBmgJaA9DCCV5ru9DOWBAlIaUUpRoFU3oA2gWR0ChpkhttQ9BdX2UKGgGaAloD0MIRb3g05x5WECUhpRSlGgVTegDaBZHQKGr8DaoMrp1fZQoaAZoCWgPQwgB28GIfShVQJSGlFKUaBVN6ANoFkdAobEhRCQcP3V9lChoBmgJaA9DCHTPukbL4VhAlIaUUpRoFU3oA2gWR0Cht5a3qiXZdX2UKGgGaAloD0MIC2DKwIEvYECUhpRSlGgVTegDaBZHQKG9c3nZCfJ1fZQoaAZoCWgPQwgzox8NJwFgQJSGlFKUaBVN6ANoFkdAocJCOktVaXV9lChoBmgJaA9DCAdF8wAWNV9AlIaUUpRoFU3oA2gWR0Chx7O1v2oOdX2UKGgGaAloD0MI2EY82U2waUCUhpRSlGgVTb4BaBZHQKHJbTzd1uB1fZQoaAZoCWgPQwhxk1FlGA1ZQJSGlFKUaBVN6ANoFkdAoc6ZLIxQBXV9lChoBmgJaA9DCKUSntDrHF5AlIaUUpRoFU3oA2gWR0Ch08Hl4keIdX2UKGgGaAloD0MI65Cb4QaCWECUhpRSlGgVTegDaBZHQKHatZ0Syt51fZQoaAZoCWgPQwjdQlciUJ9cQJSGlFKUaBVN6ANoFkdAoeA+TA31jHV9lChoBmgJaA9DCAaFQZlGcl5AlIaUUpRoFU3oA2gWR0Ch5W1Euxr0dX2UKGgGaAloD0MIpmJjXkdwWUCUhpRSlGgVTegDaBZHQKHrMJZ4fOl1fZQoaAZoCWgPQwjUKY9uhFBRQJSGlFKUaBVN6ANoFkdAofDHCfpUxXV9lChoBmgJaA9DCKCLhoxHZllAlIaUUpRoFU3oA2gWR0Ch9yzewcHXdX2UKGgGaAloD0MIWBtjJ7zPWUCUhpRSlGgVTegDaBZHQKH8ZEqDsdF1fZQoaAZoCWgPQwj8HYoC/RFsQJSGlFKUaBVN5gFoFkdAof4aRfWtl3V9lChoBmgJaA9DCLcJ98q8HlZAlIaUUpRoFU3oA2gWR0CiA8IvrWy1dX2UKGgGaAloD0MIZ2X7kDf2bECUhpRSlGgVTVYBaBZHQKIFjo1UEPl1fZQoaAZoCWgPQwhznUZaKpVXQJSGlFKUaBVN6ANoFkdAogo7FId2gXV9lChoBmgJaA9DCOYEbXL4Al9AlIaUUpRoFU3oA2gWR0CiD3nwPRRedX2UKGgGaAloD0MI499nXDjBWECUhpRSlGgVTegDaBZHQKIWXSBK+SN1fZQoaAZoCWgPQwgPD2H8NEtaQJSGlFKUaBVN6ANoFkdAohr6AlOXV3V9lChoBmgJaA9DCKyL22gAeFlAlIaUUpRoFU3oA2gWR0CiH+Gm+CbudX2UKGgGaAloD0MIeA5lqArQa0CUhpRSlGgVTa0BaBZHQKIiDgTAWSF1fZQoaAZoCWgPQwjNAYI5eltgQJSGlFKUaBVN6ANoFkdAoigWaBqbjXV9lChoBmgJaA9DCDF5A8x8w1xAlIaUUpRoFU3oA2gWR0CiLYF2/zredX2UKGgGaAloD0MIokPgSKAYWkCUhpRSlGgVTegDaBZHQKIy47r9l3B1fZQoaAZoCWgPQwigwhGkUuBWQJSGlFKUaBVN6ANoFkdAojgodKdxyXV9lChoBmgJaA9DCJPH0/IDn1tAlIaUUpRoFU3oA2gWR0CiPqIi1RcedX2UKGgGaAloD0MIb38uGrLqYUCUhpRSlGgVTegDaBZHQKJDEG0u14R1fZQoaAZoCWgPQwi4dTdPdVhYQJSGlFKUaBVN6ANoFkdAokhKFRHf/HV9lChoBmgJaA9DCJfK2xFOKwzAlIaUUpRoFU0QAWgWR0CiSSUuUUwjdX2UKGgGaAloD0MIAFXcuMV3XkCUhpRSlGgVTegDaBZHQKJOsI9C/oJ1fZQoaAZoCWgPQwgktrsH6AluQJSGlFKUaBVNpAFoFkdAolA7q2SdOXV9lChoBmgJaA9DCK3fTEwXpV5AlIaUUpRoFU3oA2gWR0CiVR8f/3nIdX2UKGgGaAloD0MI3ZVdMLhsXECUhpRSlGgVTegDaBZHQKJa9/tIClt1fZQoaAZoCWgPQwhtWFNZFOxdQJSGlFKUaBVN6ANoFkdAomCeY+jdpXV9lChoBmgJaA9DCNOh0/NuC19AlIaUUpRoFU3oA2gWR0CiZ846wMYudX2UKGgGaAloD0MI9x3DYz/WYECUhpRSlGgVTegDaBZHQKJtVCHh0hh1fZQoaAZoCWgPQwjC2hg74aldQJSGlFKUaBVN6ANoFkdAonKyg5BC2XV9lChoBmgJaA9DCMb5m1AIgWBAlIaUUpRoFU3oA2gWR0CieEoysS00dX2UKGgGaAloD0MINSkF3V4RaUCUhpRSlGgVTWMBaBZHQKJ6A/xlQMx1fZQoaAZoCWgPQwghHR7C+NJTQJSGlFKUaBVN6ANoFkdAon+/8XN1Q3V9lChoBmgJaA9DCESlETP7B2NAlIaUUpRoFU3oA2gWR0CihFLzoUzsdX2UKGgGaAloD0MI2ht8YTKsYECUhpRSlGgVTegDaBZHQKKI+NbTtsx1fZQoaAZoCWgPQwgMkj6totlWQJSGlFKUaBVN6ANoFkdAoo45aq0dBHV9lChoBmgJaA9DCFEv+DSnemBAlIaUUpRoFU3oA2gWR0Cik4iOearndX2UKGgGaAloD0MI+WpHcY6qH0CUhpRSlGgVS7xoFkdAopSqdMCcPXV9lChoBmgJaA9DCHgq4J7nnVtAlIaUUpRoFU3oA2gWR0CimdN/WlMzdX2UKGgGaAloD0MIELBW7Zq8YUCUhpRSlGgVTegDaBZHQKKflC3PRiR1fZQoaAZoCWgPQwiN7bWgd3dgQJSGlFKUaBVN6ANoFkdAoqRElHBk7XV9lChoBmgJaA9DCJ3WbVD7rWRAlIaUUpRoFU3oA2gWR0CiqRlr2xptdX2UKGgGaAloD0MIqdxELc32VkCUhpRSlGgVTegDaBZHQKKuhLdvbXZ1fZQoaAZoCWgPQwhO7+L9uABiQJSGlFKUaBVN6ANoFkdAorKHB55Z83V9lChoBmgJaA9DCK8I/reSvR/AlIaUUpRoFUv2aBZHQKKz51IRRMx1fZQoaAZoCWgPQwh6+3PREC5iQJSGlFKUaBVN6ANoFkdAorlbN6gM+nV9lChoBmgJaA9DCH7hlSTPHSHAlIaUUpRoFU0DAWgWR0Ciuir0J4SpdX2UKGgGaAloD0MI34sv2uOrWkCUhpRSlGgVTegDaBZHQKK/Q6kIomZ1fZQoaAZoCWgPQwi+LsN/uitCwJSGlFKUaBVLumgWR0Civ8rAYYR/dX2UKGgGaAloD0MIc0f/y7U4O0CUhpRSlGgVS6RoFkdAosA+NgjQiXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 1, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f649c0c2059fcbb32543a71f2b91c8b0416e5c8958d2590c2c2e23128b54f73
|
3 |
+
size 143380
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0002,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +69,7 @@
|
|
69 |
"_current_progress_remaining": -0.00044800000000000395,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
@@ -77,7 +77,7 @@
|
|
77 |
},
|
78 |
"_n_updates": 3908,
|
79 |
"n_steps": 1024,
|
80 |
-
"gamma":
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb9006fb050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb9006fb0e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb9006fb170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb9006fb200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb9006fb290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb9006fb320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb9006fb3b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb9006fb440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb9006fb4d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9006fb560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb9006fb5f0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb9007540f0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652039288.2866619,
|
51 |
"learning_rate": 0.0002,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAGbjID656VU+z2ShvVerWL7O9FI81nE5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.00044800000000000395,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKCob1lRqVkCUhpRSlIwBbJRN6AOMAXSUR0ChD6SnLq2SdX2UKGgGaAloD0MIwcdgxanUYUCUhpRSlGgVTegDaBZHQKEUUNlyzX11fZQoaAZoCWgPQwiM+E7MemFgQJSGlFKUaBVN6ANoFkdAoRnI6QvHtHV9lChoBmgJaA9DCKd5xym6mmxAlIaUUpRoFU2UA2gWR0ChHm6vaDf4dX2UKGgGaAloD0MILZljeVdkV0CUhpRSlGgVTegDaBZHQKEjTrKNhmZ1fZQoaAZoCWgPQwg74LpiRhlbQJSGlFKUaBVN6ANoFkdAoSkqCaqjrXV9lChoBmgJaA9DCF8n9WXpp2dAlIaUUpRoFU2jAmgWR0ChLE5mAbyZdX2UKGgGaAloD0MI8P0N2isXYECUhpRSlGgVTegDaBZHQKEw2e2/i5x1fZQoaAZoCWgPQwgWFAZlGpRdQJSGlFKUaBVN6ANoFkdAoTWd4HHFP3V9lChoBmgJaA9DCLtDigESxlxAlIaUUpRoFU3oA2gWR0ChOvtGViWndX2UKGgGaAloD0MIu0IfLGNjW0CUhpRSlGgVTegDaBZHQKE/laiblRx1fZQoaAZoCWgPQwjNdoU+WNthQJSGlFKUaBVN6ANoFkdAoUWH0Zm7KHV9lChoBmgJaA9DCLwi+N9KYjPAlIaUUpRoFU2QAWgWR0ChRupg9eQddX2UKGgGaAloD0MINgTHZdyuQECUhpRSlGgVS/5oFkdAoUhDJEH+qHV9lChoBmgJaA9DCPZCAdvBT1xAlIaUUpRoFU3oA2gWR0ChTkkcjqwAdX2UKGgGaAloD0MIuOaO/peAXECUhpRSlGgVTegDaBZHQKFTfZM+NcZ1fZQoaAZoCWgPQwgX83NDUzVbQJSGlFKUaBVN6ANoFkdAoVilBWxQi3V9lChoBmgJaA9DCMegE0IHklJAlIaUUpRoFU3oA2gWR0ChXjqXv6TGdX2UKGgGaAloD0MIERlW8UY3WUCUhpRSlGgVTegDaBZHQKFjr1EmY0F1fZQoaAZoCWgPQwjUfQBSm89nQJSGlFKUaBVNiQFoFkdAoWUV27nPmnV9lChoBmgJaA9DCOOkMO9xHi7AlIaUUpRoFU1CAWgWR0ChZiawMYuTdX2UKGgGaAloD0MI7lutE5cbM8CUhpRSlGgVS7ZoFkdAoWaw5HVf/nV9lChoBmgJaA9DCJRNucK7VlZAlIaUUpRoFU3oA2gWR0ChbFuqNp/PdX2UKGgGaAloD0MIs++K4H9TI0CUhpRSlGgVS/1oFkdAoW2/acqe9XV9lChoBmgJaA9DCP5g4Ln3TFxAlIaUUpRoFU3oA2gWR0ChczIJAt4BdX2UKGgGaAloD0MIZtmTwGZWYECUhpRSlGgVTegDaBZHQKF4QJ3PiUB1fZQoaAZoCWgPQwiN1Hsqp1FVQJSGlFKUaBVN6ANoFkdAoX2YwGnn+3V9lChoBmgJaA9DCHZtb7ck9yZAlIaUUpRoFUu4aBZHQKF+G3cYZVJ1fZQoaAZoCWgPQwhV3SObq1I6wJSGlFKUaBVNCQFoFkdAoX7pzmwJPnV9lChoBmgJaA9DCKlpF9PMX2FAlIaUUpRoFU3oA2gWR0Chg6jn3cpLdX2UKGgGaAloD0MIhGHAkqtGXUCUhpRSlGgVTegDaBZHQKGJwjXWe6J1fZQoaAZoCWgPQwiefHpsy+grwJSGlFKUaBVNDwFoFkdAoYqJHd43WHV9lChoBmgJaA9DCKc7Tzxnrl9AlIaUUpRoFU3oA2gWR0ChjvUW/JvHdX2UKGgGaAloD0MIXDtREhJpwz+UhpRSlGgVTQYBaBZHQKGPw26TW5J1fZQoaAZoCWgPQwjl795RY8oqQJSGlFKUaBVNmAFoFkdAoZGuWQfZEnV9lChoBmgJaA9DCAvuBzwwtVtAlIaUUpRoFU3oA2gWR0Chll7m+0w8dX2UKGgGaAloD0MIQMIwYMmUYECUhpRSlGgVTegDaBZHQKGb1557gKp1fZQoaAZoCWgPQwgrvqHw2UtfQJSGlFKUaBVN6ANoFkdAoaCLw8W9DnV9lChoBmgJaA9DCCV5ru9DOWBAlIaUUpRoFU3oA2gWR0ChpkhttQ9BdX2UKGgGaAloD0MIRb3g05x5WECUhpRSlGgVTegDaBZHQKGr8DaoMrp1fZQoaAZoCWgPQwgB28GIfShVQJSGlFKUaBVN6ANoFkdAobEhRCQcP3V9lChoBmgJaA9DCHTPukbL4VhAlIaUUpRoFU3oA2gWR0Cht5a3qiXZdX2UKGgGaAloD0MIC2DKwIEvYECUhpRSlGgVTegDaBZHQKG9c3nZCfJ1fZQoaAZoCWgPQwgzox8NJwFgQJSGlFKUaBVN6ANoFkdAocJCOktVaXV9lChoBmgJaA9DCAdF8wAWNV9AlIaUUpRoFU3oA2gWR0Chx7O1v2oOdX2UKGgGaAloD0MI2EY82U2waUCUhpRSlGgVTb4BaBZHQKHJbTzd1uB1fZQoaAZoCWgPQwhxk1FlGA1ZQJSGlFKUaBVN6ANoFkdAoc6ZLIxQBXV9lChoBmgJaA9DCKUSntDrHF5AlIaUUpRoFU3oA2gWR0Ch08Hl4keIdX2UKGgGaAloD0MI65Cb4QaCWECUhpRSlGgVTegDaBZHQKHatZ0Syt51fZQoaAZoCWgPQwjdQlciUJ9cQJSGlFKUaBVN6ANoFkdAoeA+TA31jHV9lChoBmgJaA9DCAaFQZlGcl5AlIaUUpRoFU3oA2gWR0Ch5W1Euxr0dX2UKGgGaAloD0MIpmJjXkdwWUCUhpRSlGgVTegDaBZHQKHrMJZ4fOl1fZQoaAZoCWgPQwjUKY9uhFBRQJSGlFKUaBVN6ANoFkdAofDHCfpUxXV9lChoBmgJaA9DCKCLhoxHZllAlIaUUpRoFU3oA2gWR0Ch9yzewcHXdX2UKGgGaAloD0MIWBtjJ7zPWUCUhpRSlGgVTegDaBZHQKH8ZEqDsdF1fZQoaAZoCWgPQwj8HYoC/RFsQJSGlFKUaBVN5gFoFkdAof4aRfWtl3V9lChoBmgJaA9DCLcJ98q8HlZAlIaUUpRoFU3oA2gWR0CiA8IvrWy1dX2UKGgGaAloD0MIZ2X7kDf2bECUhpRSlGgVTVYBaBZHQKIFjo1UEPl1fZQoaAZoCWgPQwhznUZaKpVXQJSGlFKUaBVN6ANoFkdAogo7FId2gXV9lChoBmgJaA9DCOYEbXL4Al9AlIaUUpRoFU3oA2gWR0CiD3nwPRRedX2UKGgGaAloD0MI499nXDjBWECUhpRSlGgVTegDaBZHQKIWXSBK+SN1fZQoaAZoCWgPQwgPD2H8NEtaQJSGlFKUaBVN6ANoFkdAohr6AlOXV3V9lChoBmgJaA9DCKyL22gAeFlAlIaUUpRoFU3oA2gWR0CiH+Gm+CbudX2UKGgGaAloD0MIeA5lqArQa0CUhpRSlGgVTa0BaBZHQKIiDgTAWSF1fZQoaAZoCWgPQwjNAYI5eltgQJSGlFKUaBVN6ANoFkdAoigWaBqbjXV9lChoBmgJaA9DCDF5A8x8w1xAlIaUUpRoFU3oA2gWR0CiLYF2/zredX2UKGgGaAloD0MIokPgSKAYWkCUhpRSlGgVTegDaBZHQKIy47r9l3B1fZQoaAZoCWgPQwigwhGkUuBWQJSGlFKUaBVN6ANoFkdAojgodKdxyXV9lChoBmgJaA9DCJPH0/IDn1tAlIaUUpRoFU3oA2gWR0CiPqIi1RcedX2UKGgGaAloD0MIb38uGrLqYUCUhpRSlGgVTegDaBZHQKJDEG0u14R1fZQoaAZoCWgPQwi4dTdPdVhYQJSGlFKUaBVN6ANoFkdAokhKFRHf/HV9lChoBmgJaA9DCJfK2xFOKwzAlIaUUpRoFU0QAWgWR0CiSSUuUUwjdX2UKGgGaAloD0MIAFXcuMV3XkCUhpRSlGgVTegDaBZHQKJOsI9C/oJ1fZQoaAZoCWgPQwgktrsH6AluQJSGlFKUaBVNpAFoFkdAolA7q2SdOXV9lChoBmgJaA9DCK3fTEwXpV5AlIaUUpRoFU3oA2gWR0CiVR8f/3nIdX2UKGgGaAloD0MI3ZVdMLhsXECUhpRSlGgVTegDaBZHQKJa9/tIClt1fZQoaAZoCWgPQwhtWFNZFOxdQJSGlFKUaBVN6ANoFkdAomCeY+jdpXV9lChoBmgJaA9DCNOh0/NuC19AlIaUUpRoFU3oA2gWR0CiZ846wMYudX2UKGgGaAloD0MI9x3DYz/WYECUhpRSlGgVTegDaBZHQKJtVCHh0hh1fZQoaAZoCWgPQwjC2hg74aldQJSGlFKUaBVN6ANoFkdAonKyg5BC2XV9lChoBmgJaA9DCMb5m1AIgWBAlIaUUpRoFU3oA2gWR0CieEoysS00dX2UKGgGaAloD0MINSkF3V4RaUCUhpRSlGgVTWMBaBZHQKJ6A/xlQMx1fZQoaAZoCWgPQwghHR7C+NJTQJSGlFKUaBVN6ANoFkdAon+/8XN1Q3V9lChoBmgJaA9DCESlETP7B2NAlIaUUpRoFU3oA2gWR0CihFLzoUzsdX2UKGgGaAloD0MI2ht8YTKsYECUhpRSlGgVTegDaBZHQKKI+NbTtsx1fZQoaAZoCWgPQwgMkj6totlWQJSGlFKUaBVN6ANoFkdAoo45aq0dBHV9lChoBmgJaA9DCFEv+DSnemBAlIaUUpRoFU3oA2gWR0Cik4iOearndX2UKGgGaAloD0MI+WpHcY6qH0CUhpRSlGgVS7xoFkdAopSqdMCcPXV9lChoBmgJaA9DCHgq4J7nnVtAlIaUUpRoFU3oA2gWR0CimdN/WlMzdX2UKGgGaAloD0MIELBW7Zq8YUCUhpRSlGgVTegDaBZHQKKflC3PRiR1fZQoaAZoCWgPQwiN7bWgd3dgQJSGlFKUaBVN6ANoFkdAoqRElHBk7XV9lChoBmgJaA9DCJ3WbVD7rWRAlIaUUpRoFU3oA2gWR0CiqRlr2xptdX2UKGgGaAloD0MIqdxELc32VkCUhpRSlGgVTegDaBZHQKKuhLdvbXZ1fZQoaAZoCWgPQwhO7+L9uABiQJSGlFKUaBVN6ANoFkdAorKHB55Z83V9lChoBmgJaA9DCK8I/reSvR/AlIaUUpRoFUv2aBZHQKKz51IRRMx1fZQoaAZoCWgPQwh6+3PREC5iQJSGlFKUaBVN6ANoFkdAorlbN6gM+nV9lChoBmgJaA9DCH7hlSTPHSHAlIaUUpRoFU0DAWgWR0Ciuir0J4SpdX2UKGgGaAloD0MI34sv2uOrWkCUhpRSlGgVTegDaBZHQKK/Q6kIomZ1fZQoaAZoCWgPQwi+LsN/uitCwJSGlFKUaBVLumgWR0Civ8rAYYR/dX2UKGgGaAloD0MIc0f/y7U4O0CUhpRSlGgVS6RoFkdAosA+NgjQiXVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
77 |
},
|
78 |
"_n_updates": 3908,
|
79 |
"n_steps": 1024,
|
80 |
+
"gamma": 1,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55c805a86809b2f92aeadcf5742063ce17da3740e9fdf9cdf9c84777e8052f11
|
3 |
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:938c53c12ea8a8ced769716cf83b1bedc2a04a87555a93fe23045c9983f2f217
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49970b350beffa9a97d19053c9f505913467e06fd684ee212e325d68c5513ff1
|
3 |
+
size 227619
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 206.7214529836683, "std_reward": 58.56874784646035, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T20:28:20.272802"}
|