File size: 2,047 Bytes
048e330
 
 
 
 
 
09e5be9
 
 
 
21d6108
048e330
 
 
 
 
 
 
631b902
 
ac1c784
6b67f3e
 
fd16aed
048e330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631b902
 
048e330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09e5be9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
tags:
- generated_from_trainer
model-index:
- name: gpt2_tiny_zh-hk-wiki
  results: []
language:
- zh-
datasets:
- jed351/cantonese-wikipedia
pipeline_tag: text-generation
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2_tiny_zh-hk-wiki

**This model was trained on a dataset with a 50MB size for 10 epochs only.**

**Purely intended for research and testing purposes.**


This model is a fine-tuned version of [jed351/gpt2-tiny-zh-hk](https://huggingface.co/jed351/gpt2-tiny-zh-hk) on the [cantonese-wikipedia](https://huggingface.co/datasets/jed351/cantonese-wikipedia) dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3834

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure



### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 200
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 412  | 3.6481          |
| 4.0728        | 2.0   | 824  | 3.5399          |
| 3.757         | 3.0   | 1236 | 3.4889          |
| 3.6669        | 4.0   | 1648 | 3.4557          |
| 3.6189        | 5.0   | 2060 | 3.4295          |
| 3.6189        | 6.0   | 2472 | 3.4129          |
| 3.5835        | 7.0   | 2884 | 3.3992          |
| 3.5604        | 8.0   | 3296 | 3.3905          |
| 3.5434        | 9.0   | 3708 | 3.3849          |
| 3.537         | 10.0  | 4120 | 3.3834          |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2