File size: 2,047 Bytes
048e330 09e5be9 21d6108 048e330 631b902 ac1c784 6b67f3e fd16aed 048e330 631b902 048e330 09e5be9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
tags:
- generated_from_trainer
model-index:
- name: gpt2_tiny_zh-hk-wiki
results: []
language:
- zh-
datasets:
- jed351/cantonese-wikipedia
pipeline_tag: text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2_tiny_zh-hk-wiki
**This model was trained on a dataset with a 50MB size for 10 epochs only.**
**Purely intended for research and testing purposes.**
This model is a fine-tuned version of [jed351/gpt2-tiny-zh-hk](https://huggingface.co/jed351/gpt2-tiny-zh-hk) on the [cantonese-wikipedia](https://huggingface.co/datasets/jed351/cantonese-wikipedia) dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3834
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 200
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 412 | 3.6481 |
| 4.0728 | 2.0 | 824 | 3.5399 |
| 3.757 | 3.0 | 1236 | 3.4889 |
| 3.6669 | 4.0 | 1648 | 3.4557 |
| 3.6189 | 5.0 | 2060 | 3.4295 |
| 3.6189 | 6.0 | 2472 | 3.4129 |
| 3.5835 | 7.0 | 2884 | 3.3992 |
| 3.5604 | 8.0 | 3296 | 3.3905 |
| 3.5434 | 9.0 | 3708 | 3.3849 |
| 3.537 | 10.0 | 4120 | 3.3834 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2 |