File size: 1,501 Bytes
3b4bb01
 
 
 
 
 
 
 
2a7d368
 
53206a2
2a7d368
 
 
53206a2
2a7d368
53206a2
 
2a7d368
53206a2
 
 
2a7d368
53206a2
2a7d368
53206a2
 
2a7d368
53206a2
 
 
 
2a7d368
53206a2
 
2a7d368
53206a2
 
2a7d368
53206a2
 
 
2a7d368
53206a2
 
2a7d368
53206a2
 
 
2a7d368
53206a2
 
2a7d368
53206a2
 
 
2a7d368
53206a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: mit
datasets:
- flytech/python-codes-25k
language:
- en
base_model:
- distilbert/distilgpt2
---

An example of small language learning model fine tuned for a domain-specific task (generating Python code).

### Direct Use

```python

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

model_name = "jeff-vincent/distilgpt2-python-codegen"

# Load the tokenizer and model for causal language modeling
tokenizer = AutoTokenizer.from_pretrained(model_name)

# If the tokenizer doesn't already have a padding token, set it explicitly
if tokenizer.pad_token is None:
    tokenizer.add_special_tokens({'pad_token': '[PAD]'})  # Add a new pad token if none exists
    tokenizer.pad_token = tokenizer.eos_token  # Or use eos_token as pad_token

model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
model.resize_token_embeddings(len(tokenizer))

# Input text
input_text = """

class Calculator:
    def __init__(self):
        self.result = None

    def add(self, a, b):
        self.result = a + b

    def subtract
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)

# Generate output (token IDs)
output_ids = model.generate(input_ids, max_length=200)

# Decode the generated token IDs into text
decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(decoded_output)

```