File size: 1,501 Bytes
3b4bb01 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 2a7d368 53206a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
license: mit
datasets:
- flytech/python-codes-25k
language:
- en
base_model:
- distilbert/distilgpt2
---
An example of small language learning model fine tuned for a domain-specific task (generating Python code).
### Direct Use
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Check if GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model_name = "jeff-vincent/distilgpt2-python-codegen"
# Load the tokenizer and model for causal language modeling
tokenizer = AutoTokenizer.from_pretrained(model_name)
# If the tokenizer doesn't already have a padding token, set it explicitly
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) # Add a new pad token if none exists
tokenizer.pad_token = tokenizer.eos_token # Or use eos_token as pad_token
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
model.resize_token_embeddings(len(tokenizer))
# Input text
input_text = """
class Calculator:
def __init__(self):
self.result = None
def add(self, a, b):
self.result = a + b
def subtract
"""
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
# Generate output (token IDs)
output_ids = model.generate(input_ids, max_length=200)
# Decode the generated token IDs into text
decoded_output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(decoded_output)
```
|