Commit
·
96f6ccb
1
Parent(s):
2ad1387
Refactored handler
Browse files- handler.py +10 -18
handler.py
CHANGED
@@ -1,35 +1,27 @@
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
-
from transformers import GenerationConfig
|
3 |
import torch
|
4 |
from typing import Any, Dict
|
5 |
|
|
|
|
|
6 |
|
7 |
class EndpointHandler:
|
8 |
def __init__(self, path=""):
|
9 |
-
|
10 |
-
|
11 |
-
torch_dtype=torch.float16,
|
12 |
-
device_map="auto")
|
13 |
|
14 |
-
self.
|
15 |
|
16 |
def __call__(self, data: Dict[str, Any]) -> [str]:
|
17 |
-
|
18 |
generation_config = GenerationConfig(
|
|
|
19 |
max_new_tokens=250, do_sample=True, top_k=50,
|
20 |
-
eos_token_id=self.model.config.eos_token_id,
|
21 |
temperature=0.8, pad_token_id=2, num_return_sequences=1,
|
22 |
min_new_tokens=30, repetition_penalty=1.2,
|
23 |
)
|
24 |
-
|
25 |
-
self.model.generation_config = generation_config
|
26 |
-
inputs = self.tokenizer(input_text, return_tensors="pt")
|
27 |
-
inputs = {key: val.to(self.device) for key, val in inputs.items()}
|
28 |
-
outputs = self.model.generate(**inputs)
|
29 |
-
|
30 |
-
decoded_output = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
31 |
|
32 |
-
|
33 |
-
decoded_output = decoded_output.replace(input_text + ' Expert: ', '')
|
34 |
|
35 |
-
return
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
from transformers import GenerationConfig, pipeline
|
3 |
import torch
|
4 |
from typing import Any, Dict
|
5 |
|
6 |
+
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
7 |
+
|
8 |
|
9 |
class EndpointHandler:
|
10 |
def __init__(self, path=""):
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", torch_dtype=dtype)
|
|
|
|
|
13 |
|
14 |
+
self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
15 |
|
16 |
def __call__(self, data: Dict[str, Any]) -> [str]:
|
17 |
+
inputs = data.pop("inputs", data)
|
18 |
generation_config = GenerationConfig(
|
19 |
+
max_length=1024,
|
20 |
max_new_tokens=250, do_sample=True, top_k=50,
|
|
|
21 |
temperature=0.8, pad_token_id=2, num_return_sequences=1,
|
22 |
min_new_tokens=30, repetition_penalty=1.2,
|
23 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
output = self.pipeline(inputs, **generation_config.to_dict())
|
|
|
26 |
|
27 |
+
return output
|