File size: 2,896 Bytes
d5a1900
b087176
d5a1900
 
b087176
d5a1900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---

base_model: vikhyatk/moondream2
library_name: transformers.js
license: apache-2.0
pipeline_tag: image-text-to-text
---


https://huggingface.co/vikhyatk/moondream2 with ONNX weights to be compatible with Transformers.js.


## Usage (Transformers.js)

> [!IMPORTANT]
> NOTE: Moondream support is experimental and requires you to install Transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source.

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [GitHub](https://github.com/xenova/transformers.js/tree/v3) using:
```bash

npm install xenova/transformers.js#v3

```

**Example:**
```js

import { AutoProcessor, AutoTokenizer, Moondream1ForConditionalGeneration, RawImage } from '@xenova/transformers';



// Load processor, tokenizer and model

const model_id = 'Xenova/moondream2';

const processor = await AutoProcessor.from_pretrained(model_id);

const tokenizer = await AutoTokenizer.from_pretrained(model_id);

const model = await Moondream1ForConditionalGeneration.from_pretrained(model_id, {

    dtype: {

        embed_tokens: 'fp16', // or 'fp32'

        vision_encoder: 'fp16', // or 'q8'

        decoder_model_merged: 'q4', // or 'q4f16' or 'q8'

    },

    device: 'webgpu',

});



// Prepare text inputs

const prompt = 'Describe this image.';

const text = `<image>\n\nQuestion: ${prompt}\n\nAnswer:`;

const text_inputs = tokenizer(text);



// Prepare vision inputs

const url = 'https://huggingface.co/vikhyatk/moondream1/resolve/main/assets/demo-1.jpg';

const image = await RawImage.fromURL(url);

const vision_inputs = await processor(image);



// Generate response

const output = await model.generate({

    ...text_inputs,

    ...vision_inputs,

    do_sample: false,

    max_new_tokens: 64,

});

const decoded = tokenizer.batch_decode(output, { skip_special_tokens: false });

console.log(decoded);

// [

//     '<|endoftext|><image>\n\n' +

//     'Question: Describe this image.\n\n' +

//     'Answer: A hand is holding a white book titled "The Little Book of Deep Learning" against a backdrop of a balcony with a railing and a view of a building and trees.<|endoftext|>'

// ]

```

We also released an online demo, which you can try yourself: https://huggingface.co/spaces/Xenova/experimental-moondream-webgpu

<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/9q6LTQIYiI3qKrKfAb4D8.mp4"></video>

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).