--- library_name: peft license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: finetuned_model_16 results: [] --- # finetuned_model_16 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.0025 - Recall: 0.0130 - F1: 0.0042 - Accuracy: 0.0207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0 | 1.0 | 612 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 | | 0.0 | 2.0 | 1224 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 | | 0.0 | 3.0 | 1836 | nan | 0.0025 | 0.0130 | 0.0042 | 0.0207 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3