--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-gpu results: [] --- # vit-base-gpu This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1136 - Accuracy: 0.9692 - Confusion Matrix: [[60, 6], [1, 160]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 285 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Confusion Matrix | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------------:| | 0.1254 | 1.7544 | 100 | 0.1518 | 0.9692 | [[59, 7], [0, 161]] | | 0.0894 | 3.5088 | 200 | 0.1136 | 0.9692 | [[60, 6], [1, 160]] | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1