File size: 5,122 Bytes
78c10df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df23fbf
78c10df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eba7cbd
78c10df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6253720
78c10df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6253720
78c10df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6253720
78c10df
 
 
 
 
 
 
 
 
 
 
 
 
6253720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78c10df
 
 
 
df23fbf
 
78c10df
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
license: other
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: deepseek-ai/deepseek-coder-1.3b-instruct
model-index:
- name: deepseek-code-1.3b-inst-NLQ2Cypher
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: deepseek-ai/deepseek-coder-1.3b-instruct
# base_model: Qwen/CodeQwen1.5-7B-Chat
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: false

load_in_8bit: false
load_in_4bit: true
strict: false

lora_fan_in_fan_out: false
data_seed: 49
seed: 49

datasets:
  - path: sample_data/alpaca_synth_cypher.jsonl
    type: sharegpt
    conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-alpaca-deepseek-1.3b-inst
# output_dir: ./qlora-alpaca-out

# hub_model_id: jermyn/CodeQwen1.5-7B-Chat-NLQ2Cypher
hub_model_id: jermyn/deepseek-code-1.3b-inst-NLQ2Cypher

adapter: qlora
lora_model_dir:

sequence_len: 896
sample_packing: false
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
# lora_modules_to_save:
#   - embed_tokens
#   - lm_head

wandb_project: fine-tune-axolotl
wandb_entity: jermyn

gradient_accumulation_steps: 1
micro_batch_size: 16
eval_batch_size: 16
num_epochs: 6
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.001
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
# saves_per_epoch: 6
save_steps: 10
save_total_limit: 3
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
# special_tokens:
#   bos_token: "<s>"
#   eos_token: "</s>"
#   unk_token: "<unk>"
save_safetensors: true

```

</details><br>

# deepseek-code-1.3b-inst-NLQ2Cypher

This model is a fine-tuned version of [deepseek-ai/deepseek-coder-1.3b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3816

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 49
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 6

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8723        | 0.1429 | 1    | 1.6354          |
| 1.9222        | 0.2857 | 2    | 1.5979          |
| 1.5222        | 0.5714 | 4    | 1.0739          |
| 0.7251        | 0.8571 | 6    | 0.7059          |
| 0.3581        | 1.1429 | 8    | 0.6420          |
| 0.2804        | 1.4286 | 10   | 0.6576          |
| 0.2337        | 1.7143 | 12   | 0.4628          |
| 0.1988        | 2.0    | 14   | 0.3674          |
| 0.1218        | 2.2857 | 16   | 0.3528          |
| 0.1087        | 2.5714 | 18   | 0.3584          |
| 0.0842        | 2.8571 | 20   | 0.3569          |
| 0.0733        | 3.1429 | 22   | 0.3610          |
| 0.0943        | 3.4286 | 24   | 0.3477          |
| 0.058         | 3.7143 | 26   | 0.3575          |
| 0.0753        | 4.0    | 28   | 0.3797          |
| 0.0435        | 4.2857 | 30   | 0.3915          |
| 0.0758        | 4.5714 | 32   | 0.3902          |
| 0.0608        | 4.8571 | 34   | 0.3875          |
| 0.0368        | 5.1429 | 36   | 0.3853          |
| 0.0444        | 5.4286 | 38   | 0.3818          |
| 0.055         | 5.7143 | 40   | 0.3820          |
| 0.0532        | 6.0    | 42   | 0.3816          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1