jerryvc's picture
Upload folder using huggingface_hub
8cebd5f verified
[2024-10-20 17:15:03,060][00556] Saving configuration to /content/train_dir/default_experiment/config.json...
[2024-10-20 17:15:03,062][00556] Rollout worker 0 uses device cpu
[2024-10-20 17:15:03,064][00556] Rollout worker 1 uses device cpu
[2024-10-20 17:15:03,065][00556] Rollout worker 2 uses device cpu
[2024-10-20 17:15:03,066][00556] Rollout worker 3 uses device cpu
[2024-10-20 17:15:03,068][00556] Rollout worker 4 uses device cpu
[2024-10-20 17:15:03,069][00556] Rollout worker 5 uses device cpu
[2024-10-20 17:15:03,070][00556] Rollout worker 6 uses device cpu
[2024-10-20 17:15:03,071][00556] Rollout worker 7 uses device cpu
[2024-10-20 17:15:03,247][00556] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:15:03,249][00556] InferenceWorker_p0-w0: min num requests: 2
[2024-10-20 17:15:03,282][00556] Starting all processes...
[2024-10-20 17:15:03,283][00556] Starting process learner_proc0
[2024-10-20 17:15:05,374][00556] Starting all processes...
[2024-10-20 17:15:05,383][00556] Starting process inference_proc0-0
[2024-10-20 17:15:05,384][00556] Starting process rollout_proc0
[2024-10-20 17:15:05,385][00556] Starting process rollout_proc1
[2024-10-20 17:15:05,385][00556] Starting process rollout_proc2
[2024-10-20 17:15:05,385][00556] Starting process rollout_proc3
[2024-10-20 17:15:05,386][00556] Starting process rollout_proc4
[2024-10-20 17:15:05,386][00556] Starting process rollout_proc5
[2024-10-20 17:15:05,389][00556] Starting process rollout_proc6
[2024-10-20 17:15:05,389][00556] Starting process rollout_proc7
[2024-10-20 17:15:20,894][02541] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:15:20,894][02541] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2024-10-20 17:15:20,919][02558] Worker 2 uses CPU cores [0]
[2024-10-20 17:15:20,964][02541] Num visible devices: 1
[2024-10-20 17:15:21,000][02541] Starting seed is not provided
[2024-10-20 17:15:21,001][02541] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:15:21,002][02541] Initializing actor-critic model on device cuda:0
[2024-10-20 17:15:21,003][02541] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 17:15:21,005][02541] RunningMeanStd input shape: (1,)
[2024-10-20 17:15:21,074][02541] ConvEncoder: input_channels=3
[2024-10-20 17:15:21,102][02556] Worker 1 uses CPU cores [1]
[2024-10-20 17:15:21,193][02557] Worker 3 uses CPU cores [1]
[2024-10-20 17:15:21,201][02555] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:15:21,202][02555] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2024-10-20 17:15:21,235][02559] Worker 6 uses CPU cores [0]
[2024-10-20 17:15:21,266][02555] Num visible devices: 1
[2024-10-20 17:15:21,274][02561] Worker 5 uses CPU cores [1]
[2024-10-20 17:15:21,300][02562] Worker 7 uses CPU cores [1]
[2024-10-20 17:15:21,325][02554] Worker 0 uses CPU cores [0]
[2024-10-20 17:15:21,397][02560] Worker 4 uses CPU cores [0]
[2024-10-20 17:15:21,467][02541] Conv encoder output size: 512
[2024-10-20 17:15:21,467][02541] Policy head output size: 512
[2024-10-20 17:15:21,526][02541] Created Actor Critic model with architecture:
[2024-10-20 17:15:21,527][02541] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2024-10-20 17:15:21,822][02541] Using optimizer <class 'torch.optim.adam.Adam'>
[2024-10-20 17:15:22,888][02541] No checkpoints found
[2024-10-20 17:15:22,889][02541] Did not load from checkpoint, starting from scratch!
[2024-10-20 17:15:22,889][02541] Initialized policy 0 weights for model version 0
[2024-10-20 17:15:22,893][02541] LearnerWorker_p0 finished initialization!
[2024-10-20 17:15:22,894][02541] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:15:22,986][02555] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 17:15:22,987][02555] RunningMeanStd input shape: (1,)
[2024-10-20 17:15:22,999][02555] ConvEncoder: input_channels=3
[2024-10-20 17:15:23,101][02555] Conv encoder output size: 512
[2024-10-20 17:15:23,101][02555] Policy head output size: 512
[2024-10-20 17:15:23,153][00556] Inference worker 0-0 is ready!
[2024-10-20 17:15:23,155][00556] All inference workers are ready! Signal rollout workers to start!
[2024-10-20 17:15:23,239][00556] Heartbeat connected on Batcher_0
[2024-10-20 17:15:23,242][00556] Heartbeat connected on LearnerWorker_p0
[2024-10-20 17:15:23,284][00556] Heartbeat connected on InferenceWorker_p0-w0
[2024-10-20 17:15:23,361][02557] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:23,360][02556] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:23,359][02562] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:23,357][02561] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:23,392][02554] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:23,396][02560] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:23,394][02559] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:23,404][02558] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:15:24,535][02557] Decorrelating experience for 0 frames...
[2024-10-20 17:15:24,536][02562] Decorrelating experience for 0 frames...
[2024-10-20 17:15:25,211][02554] Decorrelating experience for 0 frames...
[2024-10-20 17:15:25,213][02560] Decorrelating experience for 0 frames...
[2024-10-20 17:15:25,214][02558] Decorrelating experience for 0 frames...
[2024-10-20 17:15:25,210][02559] Decorrelating experience for 0 frames...
[2024-10-20 17:15:25,600][02562] Decorrelating experience for 32 frames...
[2024-10-20 17:15:26,500][02554] Decorrelating experience for 32 frames...
[2024-10-20 17:15:26,503][02559] Decorrelating experience for 32 frames...
[2024-10-20 17:15:26,505][02558] Decorrelating experience for 32 frames...
[2024-10-20 17:15:26,994][00556] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-10-20 17:15:27,432][02556] Decorrelating experience for 0 frames...
[2024-10-20 17:15:27,788][02562] Decorrelating experience for 64 frames...
[2024-10-20 17:15:28,057][02561] Decorrelating experience for 0 frames...
[2024-10-20 17:15:28,204][02560] Decorrelating experience for 32 frames...
[2024-10-20 17:15:28,653][02559] Decorrelating experience for 64 frames...
[2024-10-20 17:15:28,729][02556] Decorrelating experience for 32 frames...
[2024-10-20 17:15:29,221][02562] Decorrelating experience for 96 frames...
[2024-10-20 17:15:29,436][00556] Heartbeat connected on RolloutWorker_w7
[2024-10-20 17:15:29,779][02558] Decorrelating experience for 64 frames...
[2024-10-20 17:15:30,096][02561] Decorrelating experience for 32 frames...
[2024-10-20 17:15:30,265][02560] Decorrelating experience for 64 frames...
[2024-10-20 17:15:30,607][02556] Decorrelating experience for 64 frames...
[2024-10-20 17:15:31,101][02554] Decorrelating experience for 64 frames...
[2024-10-20 17:15:31,208][02558] Decorrelating experience for 96 frames...
[2024-10-20 17:15:31,312][02557] Decorrelating experience for 32 frames...
[2024-10-20 17:15:31,466][00556] Heartbeat connected on RolloutWorker_w2
[2024-10-20 17:15:31,618][02561] Decorrelating experience for 64 frames...
[2024-10-20 17:15:31,994][00556] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-10-20 17:15:33,360][02560] Decorrelating experience for 96 frames...
[2024-10-20 17:15:33,798][02554] Decorrelating experience for 96 frames...
[2024-10-20 17:15:33,801][00556] Heartbeat connected on RolloutWorker_w4
[2024-10-20 17:15:34,196][02556] Decorrelating experience for 96 frames...
[2024-10-20 17:15:34,206][00556] Heartbeat connected on RolloutWorker_w0
[2024-10-20 17:15:34,243][02557] Decorrelating experience for 64 frames...
[2024-10-20 17:15:34,418][02561] Decorrelating experience for 96 frames...
[2024-10-20 17:15:34,548][00556] Heartbeat connected on RolloutWorker_w1
[2024-10-20 17:15:34,787][00556] Heartbeat connected on RolloutWorker_w5
[2024-10-20 17:15:36,541][02541] Signal inference workers to stop experience collection...
[2024-10-20 17:15:36,555][02555] InferenceWorker_p0-w0: stopping experience collection
[2024-10-20 17:15:36,596][02559] Decorrelating experience for 96 frames...
[2024-10-20 17:15:36,717][02557] Decorrelating experience for 96 frames...
[2024-10-20 17:15:36,772][00556] Heartbeat connected on RolloutWorker_w6
[2024-10-20 17:15:36,803][00556] Heartbeat connected on RolloutWorker_w3
[2024-10-20 17:15:36,994][00556] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 151.6. Samples: 1516. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-10-20 17:15:36,996][00556] Avg episode reward: [(0, '2.669')]
[2024-10-20 17:15:39,764][02541] Signal inference workers to resume experience collection...
[2024-10-20 17:15:39,765][02555] InferenceWorker_p0-w0: resuming experience collection
[2024-10-20 17:15:41,994][00556] Fps is (10 sec: 1228.8, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 12288. Throughput: 0: 207.7. Samples: 3116. Policy #0 lag: (min: 0.0, avg: 1.2, max: 2.0)
[2024-10-20 17:15:42,000][00556] Avg episode reward: [(0, '2.906')]
[2024-10-20 17:15:46,994][00556] Fps is (10 sec: 2457.6, 60 sec: 1228.8, 300 sec: 1228.8). Total num frames: 24576. Throughput: 0: 262.0. Samples: 5240. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:15:46,997][00556] Avg episode reward: [(0, '3.593')]
[2024-10-20 17:15:49,960][02555] Updated weights for policy 0, policy_version 10 (0.0029)
[2024-10-20 17:15:51,994][00556] Fps is (10 sec: 3686.4, 60 sec: 1966.1, 300 sec: 1966.1). Total num frames: 49152. Throughput: 0: 441.9. Samples: 11048. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:15:51,999][00556] Avg episode reward: [(0, '4.364')]
[2024-10-20 17:15:56,998][00556] Fps is (10 sec: 4504.1, 60 sec: 2320.8, 300 sec: 2320.8). Total num frames: 69632. Throughput: 0: 584.8. Samples: 17546. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:15:57,000][00556] Avg episode reward: [(0, '4.628')]
[2024-10-20 17:16:01,994][00556] Fps is (10 sec: 2867.2, 60 sec: 2223.5, 300 sec: 2223.5). Total num frames: 77824. Throughput: 0: 532.2. Samples: 18626. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:16:01,997][00556] Avg episode reward: [(0, '4.649')]
[2024-10-20 17:16:02,757][02555] Updated weights for policy 0, policy_version 20 (0.0040)
[2024-10-20 17:16:06,994][00556] Fps is (10 sec: 2868.2, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 98304. Throughput: 0: 577.2. Samples: 23088. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:16:06,997][00556] Avg episode reward: [(0, '4.491')]
[2024-10-20 17:16:11,996][00556] Fps is (10 sec: 3685.7, 60 sec: 2548.5, 300 sec: 2548.5). Total num frames: 114688. Throughput: 0: 648.3. Samples: 29176. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:16:12,001][00556] Avg episode reward: [(0, '4.403')]
[2024-10-20 17:16:12,062][02541] Saving new best policy, reward=4.403!
[2024-10-20 17:16:13,033][02555] Updated weights for policy 0, policy_version 30 (0.0020)
[2024-10-20 17:16:16,994][00556] Fps is (10 sec: 3276.8, 60 sec: 2621.4, 300 sec: 2621.4). Total num frames: 131072. Throughput: 0: 716.0. Samples: 32220. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:16:16,998][00556] Avg episode reward: [(0, '4.388')]
[2024-10-20 17:16:21,994][00556] Fps is (10 sec: 3277.4, 60 sec: 2681.0, 300 sec: 2681.0). Total num frames: 147456. Throughput: 0: 774.0. Samples: 36344. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:16:21,997][00556] Avg episode reward: [(0, '4.313')]
[2024-10-20 17:16:24,824][02555] Updated weights for policy 0, policy_version 40 (0.0020)
[2024-10-20 17:16:26,994][00556] Fps is (10 sec: 4096.0, 60 sec: 2867.2, 300 sec: 2867.2). Total num frames: 172032. Throughput: 0: 883.7. Samples: 42882. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:16:26,996][00556] Avg episode reward: [(0, '4.438')]
[2024-10-20 17:16:27,005][02541] Saving new best policy, reward=4.438!
[2024-10-20 17:16:31,996][00556] Fps is (10 sec: 4504.9, 60 sec: 3208.4, 300 sec: 2961.6). Total num frames: 192512. Throughput: 0: 907.9. Samples: 46098. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:16:31,998][00556] Avg episode reward: [(0, '4.485')]
[2024-10-20 17:16:32,008][02541] Saving new best policy, reward=4.485!
[2024-10-20 17:16:36,603][02555] Updated weights for policy 0, policy_version 50 (0.0025)
[2024-10-20 17:16:36,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3413.3, 300 sec: 2925.7). Total num frames: 204800. Throughput: 0: 879.0. Samples: 50602. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-10-20 17:16:37,001][00556] Avg episode reward: [(0, '4.468')]
[2024-10-20 17:16:41,994][00556] Fps is (10 sec: 3277.3, 60 sec: 3549.9, 300 sec: 3003.7). Total num frames: 225280. Throughput: 0: 867.1. Samples: 56562. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:16:41,996][00556] Avg episode reward: [(0, '4.318')]
[2024-10-20 17:16:45,872][02555] Updated weights for policy 0, policy_version 60 (0.0035)
[2024-10-20 17:16:46,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3123.2). Total num frames: 249856. Throughput: 0: 920.7. Samples: 60056. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:16:47,000][00556] Avg episode reward: [(0, '4.379')]
[2024-10-20 17:16:51,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3084.0). Total num frames: 262144. Throughput: 0: 948.0. Samples: 65748. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:16:52,002][00556] Avg episode reward: [(0, '4.477')]
[2024-10-20 17:16:52,014][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000064_262144.pth...
[2024-10-20 17:16:56,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3550.1, 300 sec: 3140.3). Total num frames: 282624. Throughput: 0: 923.1. Samples: 70712. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:16:57,004][00556] Avg episode reward: [(0, '4.471')]
[2024-10-20 17:16:57,509][02555] Updated weights for policy 0, policy_version 70 (0.0026)
[2024-10-20 17:17:01,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3233.7). Total num frames: 307200. Throughput: 0: 930.7. Samples: 74102. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:17:01,997][00556] Avg episode reward: [(0, '4.424')]
[2024-10-20 17:17:06,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3235.8). Total num frames: 323584. Throughput: 0: 984.7. Samples: 80654. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:17:07,000][00556] Avg episode reward: [(0, '4.367')]
[2024-10-20 17:17:07,842][02555] Updated weights for policy 0, policy_version 80 (0.0030)
[2024-10-20 17:17:11,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.8, 300 sec: 3237.8). Total num frames: 339968. Throughput: 0: 931.3. Samples: 84792. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:17:12,000][00556] Avg episode reward: [(0, '4.414')]
[2024-10-20 17:17:16,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3276.8). Total num frames: 360448. Throughput: 0: 936.8. Samples: 88252. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:17:16,998][00556] Avg episode reward: [(0, '4.510')]
[2024-10-20 17:17:17,001][02541] Saving new best policy, reward=4.510!
[2024-10-20 17:17:18,037][02555] Updated weights for policy 0, policy_version 90 (0.0034)
[2024-10-20 17:17:22,000][00556] Fps is (10 sec: 4503.1, 60 sec: 3959.1, 300 sec: 3347.9). Total num frames: 385024. Throughput: 0: 992.4. Samples: 95266. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:17:22,008][00556] Avg episode reward: [(0, '4.607')]
[2024-10-20 17:17:22,017][02541] Saving new best policy, reward=4.607!
[2024-10-20 17:17:26,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3310.9). Total num frames: 397312. Throughput: 0: 966.3. Samples: 100044. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:17:26,996][00556] Avg episode reward: [(0, '4.601')]
[2024-10-20 17:17:29,405][02555] Updated weights for policy 0, policy_version 100 (0.0035)
[2024-10-20 17:17:31,994][00556] Fps is (10 sec: 3278.6, 60 sec: 3754.8, 300 sec: 3342.3). Total num frames: 417792. Throughput: 0: 945.3. Samples: 102596. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:17:32,001][00556] Avg episode reward: [(0, '4.566')]
[2024-10-20 17:17:36,996][00556] Fps is (10 sec: 4504.9, 60 sec: 3959.4, 300 sec: 3402.8). Total num frames: 442368. Throughput: 0: 973.0. Samples: 109534. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:17:37,002][00556] Avg episode reward: [(0, '4.592')]
[2024-10-20 17:17:38,479][02555] Updated weights for policy 0, policy_version 110 (0.0022)
[2024-10-20 17:17:41,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3398.2). Total num frames: 458752. Throughput: 0: 985.1. Samples: 115042. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:17:41,998][00556] Avg episode reward: [(0, '4.664')]
[2024-10-20 17:17:42,006][02541] Saving new best policy, reward=4.664!
[2024-10-20 17:17:46,994][00556] Fps is (10 sec: 3277.3, 60 sec: 3754.7, 300 sec: 3393.8). Total num frames: 475136. Throughput: 0: 954.7. Samples: 117062. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:17:47,000][00556] Avg episode reward: [(0, '4.536')]
[2024-10-20 17:17:49,896][02555] Updated weights for policy 0, policy_version 120 (0.0031)
[2024-10-20 17:17:51,995][00556] Fps is (10 sec: 4095.8, 60 sec: 3959.4, 300 sec: 3446.3). Total num frames: 499712. Throughput: 0: 956.2. Samples: 123684. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:17:51,997][00556] Avg episode reward: [(0, '4.404')]
[2024-10-20 17:17:56,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3467.9). Total num frames: 520192. Throughput: 0: 1007.4. Samples: 130126. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:17:57,000][00556] Avg episode reward: [(0, '4.698')]
[2024-10-20 17:17:57,005][02541] Saving new best policy, reward=4.698!
[2024-10-20 17:18:01,623][02555] Updated weights for policy 0, policy_version 130 (0.0025)
[2024-10-20 17:18:01,994][00556] Fps is (10 sec: 3276.9, 60 sec: 3754.7, 300 sec: 3435.4). Total num frames: 532480. Throughput: 0: 973.4. Samples: 132056. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:18:02,001][00556] Avg episode reward: [(0, '4.713')]
[2024-10-20 17:18:02,013][02541] Saving new best policy, reward=4.713!
[2024-10-20 17:18:06,994][00556] Fps is (10 sec: 3276.7, 60 sec: 3822.9, 300 sec: 3456.0). Total num frames: 552960. Throughput: 0: 941.6. Samples: 137634. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:18:07,000][00556] Avg episode reward: [(0, '4.475')]
[2024-10-20 17:18:10,782][02555] Updated weights for policy 0, policy_version 140 (0.0029)
[2024-10-20 17:18:11,994][00556] Fps is (10 sec: 4505.5, 60 sec: 3959.4, 300 sec: 3500.2). Total num frames: 577536. Throughput: 0: 985.5. Samples: 144394. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:18:12,000][00556] Avg episode reward: [(0, '4.464')]
[2024-10-20 17:18:16,994][00556] Fps is (10 sec: 3686.5, 60 sec: 3822.9, 300 sec: 3469.6). Total num frames: 589824. Throughput: 0: 982.7. Samples: 146816. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:18:17,000][00556] Avg episode reward: [(0, '4.402')]
[2024-10-20 17:18:21,994][00556] Fps is (10 sec: 3276.9, 60 sec: 3755.0, 300 sec: 3487.4). Total num frames: 610304. Throughput: 0: 935.7. Samples: 151638. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:18:21,997][00556] Avg episode reward: [(0, '4.324')]
[2024-10-20 17:18:22,334][02555] Updated weights for policy 0, policy_version 150 (0.0037)
[2024-10-20 17:18:26,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3527.1). Total num frames: 634880. Throughput: 0: 969.6. Samples: 158672. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:18:27,002][00556] Avg episode reward: [(0, '4.426')]
[2024-10-20 17:18:31,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3520.3). Total num frames: 651264. Throughput: 0: 995.8. Samples: 161874. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:18:31,998][00556] Avg episode reward: [(0, '4.579')]
[2024-10-20 17:18:33,044][02555] Updated weights for policy 0, policy_version 160 (0.0025)
[2024-10-20 17:18:36,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.8, 300 sec: 3513.9). Total num frames: 667648. Throughput: 0: 940.7. Samples: 166016. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:18:36,997][00556] Avg episode reward: [(0, '4.686')]
[2024-10-20 17:18:41,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3528.9). Total num frames: 688128. Throughput: 0: 942.2. Samples: 172524. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:18:42,000][00556] Avg episode reward: [(0, '4.555')]
[2024-10-20 17:18:43,120][02555] Updated weights for policy 0, policy_version 170 (0.0032)
[2024-10-20 17:18:46,997][00556] Fps is (10 sec: 4094.9, 60 sec: 3891.0, 300 sec: 3543.0). Total num frames: 708608. Throughput: 0: 975.8. Samples: 175968. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:18:47,003][00556] Avg episode reward: [(0, '4.542')]
[2024-10-20 17:18:51,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3536.5). Total num frames: 724992. Throughput: 0: 962.0. Samples: 180926. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:18:51,997][00556] Avg episode reward: [(0, '4.566')]
[2024-10-20 17:18:52,020][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000177_724992.pth...
[2024-10-20 17:18:54,722][02555] Updated weights for policy 0, policy_version 180 (0.0048)
[2024-10-20 17:18:56,994][00556] Fps is (10 sec: 3687.4, 60 sec: 3754.7, 300 sec: 3549.9). Total num frames: 745472. Throughput: 0: 938.0. Samples: 186602. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:18:57,001][00556] Avg episode reward: [(0, '4.457')]
[2024-10-20 17:19:01,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3581.6). Total num frames: 770048. Throughput: 0: 961.3. Samples: 190076. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:19:01,998][00556] Avg episode reward: [(0, '4.644')]
[2024-10-20 17:19:04,069][02555] Updated weights for policy 0, policy_version 190 (0.0013)
[2024-10-20 17:19:07,000][00556] Fps is (10 sec: 3684.4, 60 sec: 3822.6, 300 sec: 3556.0). Total num frames: 782336. Throughput: 0: 984.8. Samples: 195960. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:19:07,002][00556] Avg episode reward: [(0, '4.712')]
[2024-10-20 17:19:11,994][00556] Fps is (10 sec: 3276.7, 60 sec: 3754.7, 300 sec: 3568.1). Total num frames: 802816. Throughput: 0: 934.2. Samples: 200712. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:19:11,999][00556] Avg episode reward: [(0, '4.756')]
[2024-10-20 17:19:12,008][02541] Saving new best policy, reward=4.756!
[2024-10-20 17:19:15,359][02555] Updated weights for policy 0, policy_version 200 (0.0037)
[2024-10-20 17:19:16,994][00556] Fps is (10 sec: 4098.2, 60 sec: 3891.2, 300 sec: 3579.5). Total num frames: 823296. Throughput: 0: 938.7. Samples: 204116. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:19:17,000][00556] Avg episode reward: [(0, '4.541')]
[2024-10-20 17:19:21,997][00556] Fps is (10 sec: 4095.1, 60 sec: 3891.1, 300 sec: 3590.5). Total num frames: 843776. Throughput: 0: 994.2. Samples: 210756. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:19:21,999][00556] Avg episode reward: [(0, '4.340')]
[2024-10-20 17:19:26,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3566.9). Total num frames: 856064. Throughput: 0: 936.6. Samples: 214670. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:19:26,997][00556] Avg episode reward: [(0, '4.488')]
[2024-10-20 17:19:27,238][02555] Updated weights for policy 0, policy_version 210 (0.0017)
[2024-10-20 17:19:31,994][00556] Fps is (10 sec: 3687.3, 60 sec: 3822.9, 300 sec: 3594.4). Total num frames: 880640. Throughput: 0: 928.8. Samples: 217760. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:19:31,998][00556] Avg episode reward: [(0, '4.370')]
[2024-10-20 17:19:36,708][02555] Updated weights for policy 0, policy_version 220 (0.0030)
[2024-10-20 17:19:36,998][00556] Fps is (10 sec: 4504.1, 60 sec: 3891.0, 300 sec: 3604.4). Total num frames: 901120. Throughput: 0: 964.2. Samples: 224320. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:19:37,000][00556] Avg episode reward: [(0, '4.397')]
[2024-10-20 17:19:41,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3582.0). Total num frames: 913408. Throughput: 0: 939.1. Samples: 228862. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:19:41,997][00556] Avg episode reward: [(0, '4.374')]
[2024-10-20 17:19:46,994][00556] Fps is (10 sec: 3277.9, 60 sec: 3754.8, 300 sec: 3591.9). Total num frames: 933888. Throughput: 0: 910.8. Samples: 231062. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:19:47,001][00556] Avg episode reward: [(0, '4.654')]
[2024-10-20 17:19:48,771][02555] Updated weights for policy 0, policy_version 230 (0.0024)
[2024-10-20 17:19:51,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3601.4). Total num frames: 954368. Throughput: 0: 928.9. Samples: 237754. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:19:52,002][00556] Avg episode reward: [(0, '4.973')]
[2024-10-20 17:19:52,010][02541] Saving new best policy, reward=4.973!
[2024-10-20 17:19:56,995][00556] Fps is (10 sec: 3685.9, 60 sec: 3754.6, 300 sec: 3595.4). Total num frames: 970752. Throughput: 0: 947.9. Samples: 243368. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:19:57,000][00556] Avg episode reward: [(0, '4.925')]
[2024-10-20 17:20:00,486][02555] Updated weights for policy 0, policy_version 240 (0.0020)
[2024-10-20 17:20:01,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3589.6). Total num frames: 987136. Throughput: 0: 918.1. Samples: 245432. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:20:02,001][00556] Avg episode reward: [(0, '4.858')]
[2024-10-20 17:20:06,996][00556] Fps is (10 sec: 4095.9, 60 sec: 3823.2, 300 sec: 3613.2). Total num frames: 1011712. Throughput: 0: 906.3. Samples: 251538. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-10-20 17:20:06,998][00556] Avg episode reward: [(0, '4.596')]
[2024-10-20 17:20:09,878][02555] Updated weights for policy 0, policy_version 250 (0.0033)
[2024-10-20 17:20:11,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3607.4). Total num frames: 1028096. Throughput: 0: 962.8. Samples: 257998. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-10-20 17:20:12,001][00556] Avg episode reward: [(0, '4.561')]
[2024-10-20 17:20:16,994][00556] Fps is (10 sec: 3277.3, 60 sec: 3686.4, 300 sec: 3601.7). Total num frames: 1044480. Throughput: 0: 937.6. Samples: 259954. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:20:17,000][00556] Avg episode reward: [(0, '4.634')]
[2024-10-20 17:20:21,595][02555] Updated weights for policy 0, policy_version 260 (0.0020)
[2024-10-20 17:20:21,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3686.5, 300 sec: 3610.0). Total num frames: 1064960. Throughput: 0: 908.8. Samples: 265214. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:20:22,000][00556] Avg episode reward: [(0, '4.502')]
[2024-10-20 17:20:26,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3679.5). Total num frames: 1085440. Throughput: 0: 957.8. Samples: 271964. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:20:26,996][00556] Avg episode reward: [(0, '4.740')]
[2024-10-20 17:20:31,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3735.0). Total num frames: 1101824. Throughput: 0: 968.5. Samples: 274646. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:20:32,003][00556] Avg episode reward: [(0, '5.000')]
[2024-10-20 17:20:32,017][02541] Saving new best policy, reward=5.000!
[2024-10-20 17:20:32,964][02555] Updated weights for policy 0, policy_version 270 (0.0026)
[2024-10-20 17:20:36,999][00556] Fps is (10 sec: 3275.3, 60 sec: 3618.1, 300 sec: 3748.8). Total num frames: 1118208. Throughput: 0: 918.0. Samples: 279070. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:20:37,001][00556] Avg episode reward: [(0, '4.945')]
[2024-10-20 17:20:41,994][00556] Fps is (10 sec: 4095.9, 60 sec: 3822.9, 300 sec: 3790.5). Total num frames: 1142784. Throughput: 0: 941.9. Samples: 285752. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:20:41,998][00556] Avg episode reward: [(0, '4.762')]
[2024-10-20 17:20:42,566][02555] Updated weights for policy 0, policy_version 280 (0.0024)
[2024-10-20 17:20:46,998][00556] Fps is (10 sec: 4505.7, 60 sec: 3822.7, 300 sec: 3776.6). Total num frames: 1163264. Throughput: 0: 970.7. Samples: 289116. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:20:47,002][00556] Avg episode reward: [(0, '4.688')]
[2024-10-20 17:20:51,994][00556] Fps is (10 sec: 3276.9, 60 sec: 3686.4, 300 sec: 3748.9). Total num frames: 1175552. Throughput: 0: 932.0. Samples: 293478. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:20:52,000][00556] Avg episode reward: [(0, '4.577')]
[2024-10-20 17:20:52,010][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000287_1175552.pth...
[2024-10-20 17:20:52,131][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000064_262144.pth
[2024-10-20 17:20:54,261][02555] Updated weights for policy 0, policy_version 290 (0.0038)
[2024-10-20 17:20:56,994][00556] Fps is (10 sec: 3687.9, 60 sec: 3823.0, 300 sec: 3804.4). Total num frames: 1200128. Throughput: 0: 923.6. Samples: 299562. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:20:57,006][00556] Avg episode reward: [(0, '4.978')]
[2024-10-20 17:21:01,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 1220608. Throughput: 0: 955.8. Samples: 302966. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:21:02,002][00556] Avg episode reward: [(0, '4.826')]
[2024-10-20 17:21:04,910][02555] Updated weights for policy 0, policy_version 300 (0.0017)
[2024-10-20 17:21:06,994][00556] Fps is (10 sec: 3276.9, 60 sec: 3686.5, 300 sec: 3790.6). Total num frames: 1232896. Throughput: 0: 950.8. Samples: 308002. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:21:06,997][00556] Avg episode reward: [(0, '4.719')]
[2024-10-20 17:21:11,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3804.4). Total num frames: 1253376. Throughput: 0: 917.7. Samples: 313262. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:21:11,999][00556] Avg episode reward: [(0, '4.776')]
[2024-10-20 17:21:15,433][02555] Updated weights for policy 0, policy_version 310 (0.0019)
[2024-10-20 17:21:16,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3818.3). Total num frames: 1273856. Throughput: 0: 932.1. Samples: 316592. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:21:16,997][00556] Avg episode reward: [(0, '4.856')]
[2024-10-20 17:21:21,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 1290240. Throughput: 0: 966.6. Samples: 322564. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:21:22,006][00556] Avg episode reward: [(0, '4.800')]
[2024-10-20 17:21:26,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3776.7). Total num frames: 1306624. Throughput: 0: 918.4. Samples: 327080. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:21:26,999][00556] Avg episode reward: [(0, '4.793')]
[2024-10-20 17:21:27,150][02555] Updated weights for policy 0, policy_version 320 (0.0027)
[2024-10-20 17:21:31,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3818.3). Total num frames: 1331200. Throughput: 0: 917.7. Samples: 330410. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:21:31,999][00556] Avg episode reward: [(0, '4.815')]
[2024-10-20 17:21:36,637][02555] Updated weights for policy 0, policy_version 330 (0.0023)
[2024-10-20 17:21:36,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.5, 300 sec: 3818.3). Total num frames: 1351680. Throughput: 0: 972.2. Samples: 337226. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:21:36,999][00556] Avg episode reward: [(0, '4.618')]
[2024-10-20 17:21:41,997][00556] Fps is (10 sec: 3276.0, 60 sec: 3686.3, 300 sec: 3776.6). Total num frames: 1363968. Throughput: 0: 929.2. Samples: 341376. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:21:42,002][00556] Avg episode reward: [(0, '4.724')]
[2024-10-20 17:21:46,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.7, 300 sec: 3804.4). Total num frames: 1384448. Throughput: 0: 914.3. Samples: 344108. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:21:46,996][00556] Avg episode reward: [(0, '4.833')]
[2024-10-20 17:21:48,289][02555] Updated weights for policy 0, policy_version 340 (0.0028)
[2024-10-20 17:21:51,994][00556] Fps is (10 sec: 4506.7, 60 sec: 3891.2, 300 sec: 3818.3). Total num frames: 1409024. Throughput: 0: 955.1. Samples: 350982. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:21:51,997][00556] Avg episode reward: [(0, '4.703')]
[2024-10-20 17:21:56,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3776.7). Total num frames: 1421312. Throughput: 0: 952.0. Samples: 356100. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:21:56,999][00556] Avg episode reward: [(0, '4.475')]
[2024-10-20 17:22:00,114][02555] Updated weights for policy 0, policy_version 350 (0.0034)
[2024-10-20 17:22:01,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3790.5). Total num frames: 1441792. Throughput: 0: 924.8. Samples: 358206. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:02,002][00556] Avg episode reward: [(0, '4.488')]
[2024-10-20 17:22:06,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3804.4). Total num frames: 1462272. Throughput: 0: 940.1. Samples: 364868. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:06,997][00556] Avg episode reward: [(0, '4.633')]
[2024-10-20 17:22:09,196][02555] Updated weights for policy 0, policy_version 360 (0.0024)
[2024-10-20 17:22:11,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 1478656. Throughput: 0: 970.1. Samples: 370734. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:22:11,998][00556] Avg episode reward: [(0, '4.765')]
[2024-10-20 17:22:16,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 1495040. Throughput: 0: 939.6. Samples: 372692. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:22:17,001][00556] Avg episode reward: [(0, '4.802')]
[2024-10-20 17:22:21,005][02555] Updated weights for policy 0, policy_version 370 (0.0037)
[2024-10-20 17:22:21,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3804.4). Total num frames: 1519616. Throughput: 0: 916.8. Samples: 378482. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:22,001][00556] Avg episode reward: [(0, '4.777')]
[2024-10-20 17:22:26,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 1540096. Throughput: 0: 979.2. Samples: 385436. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:27,000][00556] Avg episode reward: [(0, '4.433')]
[2024-10-20 17:22:31,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 1552384. Throughput: 0: 968.2. Samples: 387676. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:31,997][00556] Avg episode reward: [(0, '4.478')]
[2024-10-20 17:22:32,167][02555] Updated weights for policy 0, policy_version 380 (0.0025)
[2024-10-20 17:22:36,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3776.7). Total num frames: 1572864. Throughput: 0: 923.3. Samples: 392530. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:37,000][00556] Avg episode reward: [(0, '4.417')]
[2024-10-20 17:22:41,833][02555] Updated weights for policy 0, policy_version 390 (0.0051)
[2024-10-20 17:22:41,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.4, 300 sec: 3804.4). Total num frames: 1597440. Throughput: 0: 959.0. Samples: 399254. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:42,002][00556] Avg episode reward: [(0, '4.413')]
[2024-10-20 17:22:46,999][00556] Fps is (10 sec: 4094.2, 60 sec: 3822.7, 300 sec: 3776.6). Total num frames: 1613824. Throughput: 0: 981.0. Samples: 402356. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:22:47,001][00556] Avg episode reward: [(0, '4.597')]
[2024-10-20 17:22:51,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 1630208. Throughput: 0: 925.0. Samples: 406494. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:22:51,999][00556] Avg episode reward: [(0, '4.710')]
[2024-10-20 17:22:52,008][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000398_1630208.pth...
[2024-10-20 17:22:52,126][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000177_724992.pth
[2024-10-20 17:22:53,659][02555] Updated weights for policy 0, policy_version 400 (0.0014)
[2024-10-20 17:22:56,994][00556] Fps is (10 sec: 3688.0, 60 sec: 3822.9, 300 sec: 3790.5). Total num frames: 1650688. Throughput: 0: 939.7. Samples: 413022. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:22:56,999][00556] Avg episode reward: [(0, '4.779')]
[2024-10-20 17:23:01,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3790.5). Total num frames: 1671168. Throughput: 0: 970.4. Samples: 416362. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:23:02,000][00556] Avg episode reward: [(0, '4.848')]
[2024-10-20 17:23:04,254][02555] Updated weights for policy 0, policy_version 410 (0.0031)
[2024-10-20 17:23:06,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3748.9). Total num frames: 1683456. Throughput: 0: 944.8. Samples: 421000. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:23:07,001][00556] Avg episode reward: [(0, '4.805')]
[2024-10-20 17:23:11,994][00556] Fps is (10 sec: 3276.7, 60 sec: 3754.6, 300 sec: 3776.6). Total num frames: 1703936. Throughput: 0: 914.4. Samples: 426584. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:23:11,997][00556] Avg episode reward: [(0, '4.771')]
[2024-10-20 17:23:14,595][02555] Updated weights for policy 0, policy_version 420 (0.0021)
[2024-10-20 17:23:16,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3790.5). Total num frames: 1728512. Throughput: 0: 940.2. Samples: 429984. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-10-20 17:23:17,001][00556] Avg episode reward: [(0, '4.734')]
[2024-10-20 17:23:21,996][00556] Fps is (10 sec: 3686.0, 60 sec: 3686.3, 300 sec: 3748.9). Total num frames: 1740800. Throughput: 0: 957.6. Samples: 435624. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:23:22,003][00556] Avg episode reward: [(0, '4.944')]
[2024-10-20 17:23:26,691][02555] Updated weights for policy 0, policy_version 430 (0.0034)
[2024-10-20 17:23:26,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 1761280. Throughput: 0: 915.1. Samples: 440432. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:23:26,997][00556] Avg episode reward: [(0, '5.364')]
[2024-10-20 17:23:26,999][02541] Saving new best policy, reward=5.364!
[2024-10-20 17:23:31,994][00556] Fps is (10 sec: 4506.2, 60 sec: 3891.2, 300 sec: 3790.5). Total num frames: 1785856. Throughput: 0: 921.1. Samples: 443802. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:23:32,001][00556] Avg episode reward: [(0, '5.019')]
[2024-10-20 17:23:36,201][02555] Updated weights for policy 0, policy_version 440 (0.0028)
[2024-10-20 17:23:36,996][00556] Fps is (10 sec: 4095.4, 60 sec: 3822.8, 300 sec: 3776.6). Total num frames: 1802240. Throughput: 0: 973.7. Samples: 450314. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:23:37,000][00556] Avg episode reward: [(0, '4.710')]
[2024-10-20 17:23:41,994][00556] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3748.9). Total num frames: 1814528. Throughput: 0: 919.2. Samples: 454386. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:23:42,001][00556] Avg episode reward: [(0, '4.684')]
[2024-10-20 17:23:46,996][00556] Fps is (10 sec: 3686.3, 60 sec: 3754.8, 300 sec: 3776.6). Total num frames: 1839104. Throughput: 0: 913.8. Samples: 457484. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:23:47,007][00556] Avg episode reward: [(0, '4.459')]
[2024-10-20 17:23:47,651][02555] Updated weights for policy 0, policy_version 450 (0.0026)
[2024-10-20 17:23:51,998][00556] Fps is (10 sec: 4504.0, 60 sec: 3822.7, 300 sec: 3776.6). Total num frames: 1859584. Throughput: 0: 962.5. Samples: 464316. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:23:52,003][00556] Avg episode reward: [(0, '4.597')]
[2024-10-20 17:23:56,998][00556] Fps is (10 sec: 3685.4, 60 sec: 3754.4, 300 sec: 3748.8). Total num frames: 1875968. Throughput: 0: 944.4. Samples: 469084. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:23:57,001][00556] Avg episode reward: [(0, '4.627')]
[2024-10-20 17:23:59,352][02555] Updated weights for policy 0, policy_version 460 (0.0029)
[2024-10-20 17:24:01,994][00556] Fps is (10 sec: 3277.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 1892352. Throughput: 0: 919.8. Samples: 471376. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:24:01,997][00556] Avg episode reward: [(0, '4.696')]
[2024-10-20 17:24:06,994][00556] Fps is (10 sec: 4097.7, 60 sec: 3891.2, 300 sec: 3776.7). Total num frames: 1916928. Throughput: 0: 945.6. Samples: 478174. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:24:07,000][00556] Avg episode reward: [(0, '4.839')]
[2024-10-20 17:24:08,367][02555] Updated weights for policy 0, policy_version 470 (0.0027)
[2024-10-20 17:24:11,994][00556] Fps is (10 sec: 4096.1, 60 sec: 3823.0, 300 sec: 3762.8). Total num frames: 1933312. Throughput: 0: 966.9. Samples: 483942. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:24:11,996][00556] Avg episode reward: [(0, '4.737')]
[2024-10-20 17:24:16,994][00556] Fps is (10 sec: 3276.9, 60 sec: 3686.4, 300 sec: 3748.9). Total num frames: 1949696. Throughput: 0: 938.0. Samples: 486012. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:24:16,996][00556] Avg episode reward: [(0, '4.771')]
[2024-10-20 17:24:20,063][02555] Updated weights for policy 0, policy_version 480 (0.0033)
[2024-10-20 17:24:21,995][00556] Fps is (10 sec: 4095.8, 60 sec: 3891.3, 300 sec: 3790.5). Total num frames: 1974272. Throughput: 0: 932.6. Samples: 492278. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:24:21,999][00556] Avg episode reward: [(0, '4.778')]
[2024-10-20 17:24:26,998][00556] Fps is (10 sec: 4503.7, 60 sec: 3890.9, 300 sec: 3776.6). Total num frames: 1994752. Throughput: 0: 989.4. Samples: 498914. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:24:27,004][00556] Avg episode reward: [(0, '4.685')]
[2024-10-20 17:24:31,202][02555] Updated weights for policy 0, policy_version 490 (0.0027)
[2024-10-20 17:24:31,994][00556] Fps is (10 sec: 3276.9, 60 sec: 3686.4, 300 sec: 3748.9). Total num frames: 2007040. Throughput: 0: 965.1. Samples: 500910. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:24:31,998][00556] Avg episode reward: [(0, '4.489')]
[2024-10-20 17:24:36,994][00556] Fps is (10 sec: 3278.2, 60 sec: 3754.8, 300 sec: 3776.7). Total num frames: 2027520. Throughput: 0: 929.3. Samples: 506130. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:24:36,996][00556] Avg episode reward: [(0, '4.545')]
[2024-10-20 17:24:40,936][02555] Updated weights for policy 0, policy_version 500 (0.0035)
[2024-10-20 17:24:41,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3790.5). Total num frames: 2052096. Throughput: 0: 970.8. Samples: 512764. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:24:41,997][00556] Avg episode reward: [(0, '4.800')]
[2024-10-20 17:24:46,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3823.0, 300 sec: 3776.7). Total num frames: 2068480. Throughput: 0: 983.1. Samples: 515614. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:24:46,998][00556] Avg episode reward: [(0, '4.732')]
[2024-10-20 17:24:51,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.9, 300 sec: 3776.7). Total num frames: 2084864. Throughput: 0: 928.0. Samples: 519936. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:24:52,002][00556] Avg episode reward: [(0, '4.685')]
[2024-10-20 17:24:52,013][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000509_2084864.pth...
[2024-10-20 17:24:52,144][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000287_1175552.pth
[2024-10-20 17:24:52,823][02555] Updated weights for policy 0, policy_version 510 (0.0023)
[2024-10-20 17:24:56,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3823.2, 300 sec: 3790.5). Total num frames: 2105344. Throughput: 0: 949.9. Samples: 526688. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:24:57,003][00556] Avg episode reward: [(0, '4.702')]
[2024-10-20 17:25:01,995][00556] Fps is (10 sec: 4095.6, 60 sec: 3891.1, 300 sec: 3776.7). Total num frames: 2125824. Throughput: 0: 978.2. Samples: 530034. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:25:01,999][00556] Avg episode reward: [(0, '4.588')]
[2024-10-20 17:25:02,938][02555] Updated weights for policy 0, policy_version 520 (0.0040)
[2024-10-20 17:25:06,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 2138112. Throughput: 0: 937.6. Samples: 534468. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:25:06,996][00556] Avg episode reward: [(0, '4.495')]
[2024-10-20 17:25:11,998][00556] Fps is (10 sec: 3685.3, 60 sec: 3822.7, 300 sec: 3790.5). Total num frames: 2162688. Throughput: 0: 923.6. Samples: 540474. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:25:12,001][00556] Avg episode reward: [(0, '4.351')]
[2024-10-20 17:25:13,734][02555] Updated weights for policy 0, policy_version 530 (0.0019)
[2024-10-20 17:25:16,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3790.5). Total num frames: 2183168. Throughput: 0: 955.0. Samples: 543884. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:25:16,997][00556] Avg episode reward: [(0, '4.457')]
[2024-10-20 17:25:21,994][00556] Fps is (10 sec: 3278.1, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 2195456. Throughput: 0: 956.7. Samples: 549180. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:25:21,997][00556] Avg episode reward: [(0, '4.714')]
[2024-10-20 17:25:25,374][02555] Updated weights for policy 0, policy_version 540 (0.0053)
[2024-10-20 17:25:26,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.7, 300 sec: 3776.7). Total num frames: 2215936. Throughput: 0: 925.3. Samples: 554404. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:25:27,002][00556] Avg episode reward: [(0, '4.837')]
[2024-10-20 17:25:31,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3804.5). Total num frames: 2240512. Throughput: 0: 934.6. Samples: 557670. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:25:32,000][00556] Avg episode reward: [(0, '4.752')]
[2024-10-20 17:25:35,054][02555] Updated weights for policy 0, policy_version 550 (0.0034)
[2024-10-20 17:25:36,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3776.7). Total num frames: 2256896. Throughput: 0: 972.8. Samples: 563714. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:25:36,998][00556] Avg episode reward: [(0, '4.594')]
[2024-10-20 17:25:41,994][00556] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3748.9). Total num frames: 2269184. Throughput: 0: 915.7. Samples: 567896. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:25:41,997][00556] Avg episode reward: [(0, '4.525')]
[2024-10-20 17:25:46,605][02555] Updated weights for policy 0, policy_version 560 (0.0025)
[2024-10-20 17:25:46,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 2293760. Throughput: 0: 916.6. Samples: 571280. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:25:46,998][00556] Avg episode reward: [(0, '4.673')]
[2024-10-20 17:25:51,996][00556] Fps is (10 sec: 4504.7, 60 sec: 3822.8, 300 sec: 3776.6). Total num frames: 2314240. Throughput: 0: 972.2. Samples: 578220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:25:52,001][00556] Avg episode reward: [(0, '4.823')]
[2024-10-20 17:25:56,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3762.8). Total num frames: 2330624. Throughput: 0: 940.2. Samples: 582780. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:25:56,997][00556] Avg episode reward: [(0, '4.919')]
[2024-10-20 17:25:58,127][02555] Updated weights for policy 0, policy_version 570 (0.0019)
[2024-10-20 17:26:01,994][00556] Fps is (10 sec: 3687.1, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 2351104. Throughput: 0: 923.7. Samples: 585452. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:26:01,997][00556] Avg episode reward: [(0, '4.706')]
[2024-10-20 17:26:06,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3790.5). Total num frames: 2371584. Throughput: 0: 956.9. Samples: 592240. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:26:07,001][00556] Avg episode reward: [(0, '4.485')]
[2024-10-20 17:26:07,351][02555] Updated weights for policy 0, policy_version 580 (0.0049)
[2024-10-20 17:26:11,994][00556] Fps is (10 sec: 3686.3, 60 sec: 3754.9, 300 sec: 3776.6). Total num frames: 2387968. Throughput: 0: 956.1. Samples: 597430. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:26:11,997][00556] Avg episode reward: [(0, '4.536')]
[2024-10-20 17:26:16,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3776.7). Total num frames: 2404352. Throughput: 0: 929.2. Samples: 599484. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:26:17,001][00556] Avg episode reward: [(0, '4.665')]
[2024-10-20 17:26:19,046][02555] Updated weights for policy 0, policy_version 590 (0.0028)
[2024-10-20 17:26:21,994][00556] Fps is (10 sec: 4096.1, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 2428928. Throughput: 0: 940.4. Samples: 606030. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:26:22,003][00556] Avg episode reward: [(0, '4.743')]
[2024-10-20 17:26:26,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3776.7). Total num frames: 2445312. Throughput: 0: 985.4. Samples: 612240. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:26:27,000][00556] Avg episode reward: [(0, '4.689')]
[2024-10-20 17:26:30,201][02555] Updated weights for policy 0, policy_version 600 (0.0029)
[2024-10-20 17:26:31,994][00556] Fps is (10 sec: 3276.7, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 2461696. Throughput: 0: 954.0. Samples: 614212. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:26:31,997][00556] Avg episode reward: [(0, '4.709')]
[2024-10-20 17:26:36,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3790.6). Total num frames: 2482176. Throughput: 0: 928.2. Samples: 619986. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:26:36,999][00556] Avg episode reward: [(0, '4.537')]
[2024-10-20 17:26:39,918][02555] Updated weights for policy 0, policy_version 610 (0.0037)
[2024-10-20 17:26:41,994][00556] Fps is (10 sec: 4505.7, 60 sec: 3959.5, 300 sec: 3804.4). Total num frames: 2506752. Throughput: 0: 974.3. Samples: 626622. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:26:42,001][00556] Avg episode reward: [(0, '4.535')]
[2024-10-20 17:26:47,000][00556] Fps is (10 sec: 3684.4, 60 sec: 3754.3, 300 sec: 3762.7). Total num frames: 2519040. Throughput: 0: 963.4. Samples: 628808. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:26:47,002][00556] Avg episode reward: [(0, '4.781')]
[2024-10-20 17:26:51,785][02555] Updated weights for policy 0, policy_version 620 (0.0034)
[2024-10-20 17:26:51,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.8, 300 sec: 3790.5). Total num frames: 2539520. Throughput: 0: 917.6. Samples: 633530. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:26:51,998][00556] Avg episode reward: [(0, '4.873')]
[2024-10-20 17:26:52,012][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000620_2539520.pth...
[2024-10-20 17:26:52,183][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000398_1630208.pth
[2024-10-20 17:26:56,994][00556] Fps is (10 sec: 4098.2, 60 sec: 3822.9, 300 sec: 3790.5). Total num frames: 2560000. Throughput: 0: 951.9. Samples: 640266. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:26:57,003][00556] Avg episode reward: [(0, '4.658')]
[2024-10-20 17:27:01,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3776.6). Total num frames: 2576384. Throughput: 0: 976.4. Samples: 643420. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:27:01,997][00556] Avg episode reward: [(0, '4.596')]
[2024-10-20 17:27:02,378][02555] Updated weights for policy 0, policy_version 630 (0.0023)
[2024-10-20 17:27:06,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3776.7). Total num frames: 2592768. Throughput: 0: 922.7. Samples: 647550. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:27:07,003][00556] Avg episode reward: [(0, '4.627')]
[2024-10-20 17:27:11,994][00556] Fps is (10 sec: 4096.1, 60 sec: 3823.0, 300 sec: 3804.4). Total num frames: 2617344. Throughput: 0: 931.9. Samples: 654174. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:27:12,002][00556] Avg episode reward: [(0, '4.807')]
[2024-10-20 17:27:12,912][02555] Updated weights for policy 0, policy_version 640 (0.0036)
[2024-10-20 17:27:16,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3776.7). Total num frames: 2633728. Throughput: 0: 957.7. Samples: 657310. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:27:17,001][00556] Avg episode reward: [(0, '4.921')]
[2024-10-20 17:27:21,998][00556] Fps is (10 sec: 3275.7, 60 sec: 3686.2, 300 sec: 3762.7). Total num frames: 2650112. Throughput: 0: 934.8. Samples: 662054. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:27:22,000][00556] Avg episode reward: [(0, '4.677')]
[2024-10-20 17:27:24,618][02555] Updated weights for policy 0, policy_version 650 (0.0041)
[2024-10-20 17:27:26,994][00556] Fps is (10 sec: 3686.3, 60 sec: 3754.6, 300 sec: 3790.5). Total num frames: 2670592. Throughput: 0: 916.4. Samples: 667862. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:27:26,996][00556] Avg episode reward: [(0, '4.529')]
[2024-10-20 17:27:31,994][00556] Fps is (10 sec: 4507.1, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 2695168. Throughput: 0: 942.7. Samples: 671224. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:27:31,996][00556] Avg episode reward: [(0, '4.440')]
[2024-10-20 17:27:34,301][02555] Updated weights for policy 0, policy_version 660 (0.0025)
[2024-10-20 17:27:36,994][00556] Fps is (10 sec: 3686.5, 60 sec: 3754.7, 300 sec: 3762.8). Total num frames: 2707456. Throughput: 0: 967.6. Samples: 677072. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:27:37,000][00556] Avg episode reward: [(0, '4.531')]
[2024-10-20 17:27:41,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3776.7). Total num frames: 2727936. Throughput: 0: 927.2. Samples: 681990. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:27:41,997][00556] Avg episode reward: [(0, '4.663')]
[2024-10-20 17:27:45,328][02555] Updated weights for policy 0, policy_version 670 (0.0018)
[2024-10-20 17:27:46,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3823.3, 300 sec: 3790.5). Total num frames: 2748416. Throughput: 0: 931.8. Samples: 685350. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:27:47,000][00556] Avg episode reward: [(0, '4.670')]
[2024-10-20 17:27:51,996][00556] Fps is (10 sec: 4095.4, 60 sec: 3822.8, 300 sec: 3790.5). Total num frames: 2768896. Throughput: 0: 984.9. Samples: 691870. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:27:51,999][00556] Avg episode reward: [(0, '4.565')]
[2024-10-20 17:27:56,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 2781184. Throughput: 0: 929.6. Samples: 696004. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:27:56,996][00556] Avg episode reward: [(0, '4.838')]
[2024-10-20 17:27:57,025][02555] Updated weights for policy 0, policy_version 680 (0.0030)
[2024-10-20 17:28:01,994][00556] Fps is (10 sec: 3686.9, 60 sec: 3822.9, 300 sec: 3804.4). Total num frames: 2805760. Throughput: 0: 932.3. Samples: 699264. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:28:02,001][00556] Avg episode reward: [(0, '4.913')]
[2024-10-20 17:28:06,054][02555] Updated weights for policy 0, policy_version 690 (0.0033)
[2024-10-20 17:28:06,996][00556] Fps is (10 sec: 4504.9, 60 sec: 3891.1, 300 sec: 3804.4). Total num frames: 2826240. Throughput: 0: 979.4. Samples: 706126. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:28:07,003][00556] Avg episode reward: [(0, '4.540')]
[2024-10-20 17:28:11,996][00556] Fps is (10 sec: 3685.9, 60 sec: 3754.6, 300 sec: 3776.6). Total num frames: 2842624. Throughput: 0: 953.3. Samples: 710762. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:28:12,002][00556] Avg episode reward: [(0, '4.684')]
[2024-10-20 17:28:16,994][00556] Fps is (10 sec: 3277.3, 60 sec: 3754.7, 300 sec: 3790.6). Total num frames: 2859008. Throughput: 0: 929.2. Samples: 713036. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:28:16,997][00556] Avg episode reward: [(0, '4.639')]
[2024-10-20 17:28:17,962][02555] Updated weights for policy 0, policy_version 700 (0.0028)
[2024-10-20 17:28:21,994][00556] Fps is (10 sec: 4096.6, 60 sec: 3891.4, 300 sec: 3804.4). Total num frames: 2883584. Throughput: 0: 949.9. Samples: 719818. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:28:21,997][00556] Avg episode reward: [(0, '4.914')]
[2024-10-20 17:28:26,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3776.7). Total num frames: 2899968. Throughput: 0: 965.8. Samples: 725452. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:28:26,996][00556] Avg episode reward: [(0, '4.976')]
[2024-10-20 17:28:29,403][02555] Updated weights for policy 0, policy_version 710 (0.0020)
[2024-10-20 17:28:31,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3776.7). Total num frames: 2916352. Throughput: 0: 935.8. Samples: 727460. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:28:32,001][00556] Avg episode reward: [(0, '4.898')]
[2024-10-20 17:28:36,994][00556] Fps is (10 sec: 3686.3, 60 sec: 3822.9, 300 sec: 3804.4). Total num frames: 2936832. Throughput: 0: 931.5. Samples: 733786. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:28:37,002][00556] Avg episode reward: [(0, '4.801')]
[2024-10-20 17:28:38,815][02555] Updated weights for policy 0, policy_version 720 (0.0028)
[2024-10-20 17:28:41,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 2961408. Throughput: 0: 983.6. Samples: 740264. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:28:42,002][00556] Avg episode reward: [(0, '4.805')]
[2024-10-20 17:28:46,994][00556] Fps is (10 sec: 3686.5, 60 sec: 3754.7, 300 sec: 3776.7). Total num frames: 2973696. Throughput: 0: 955.8. Samples: 742276. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:28:46,998][00556] Avg episode reward: [(0, '4.785')]
[2024-10-20 17:28:50,856][02555] Updated weights for policy 0, policy_version 730 (0.0033)
[2024-10-20 17:28:51,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.8, 300 sec: 3790.6). Total num frames: 2994176. Throughput: 0: 918.5. Samples: 747456. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:28:52,002][00556] Avg episode reward: [(0, '4.639')]
[2024-10-20 17:28:52,011][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000731_2994176.pth...
[2024-10-20 17:28:52,146][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000509_2084864.pth
[2024-10-20 17:28:56,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 3014656. Throughput: 0: 966.4. Samples: 754250. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:28:56,997][00556] Avg episode reward: [(0, '4.543')]
[2024-10-20 17:29:00,864][02555] Updated weights for policy 0, policy_version 740 (0.0024)
[2024-10-20 17:29:01,996][00556] Fps is (10 sec: 3685.9, 60 sec: 3754.6, 300 sec: 3776.6). Total num frames: 3031040. Throughput: 0: 978.7. Samples: 757078. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:29:02,001][00556] Avg episode reward: [(0, '4.622')]
[2024-10-20 17:29:06,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.8, 300 sec: 3790.5). Total num frames: 3051520. Throughput: 0: 921.9. Samples: 761304. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:29:06,996][00556] Avg episode reward: [(0, '4.663')]
[2024-10-20 17:29:11,500][02555] Updated weights for policy 0, policy_version 750 (0.0015)
[2024-10-20 17:29:11,994][00556] Fps is (10 sec: 4096.6, 60 sec: 3823.0, 300 sec: 3804.4). Total num frames: 3072000. Throughput: 0: 951.8. Samples: 768284. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:29:11,997][00556] Avg episode reward: [(0, '4.905')]
[2024-10-20 17:29:16,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3790.5). Total num frames: 3092480. Throughput: 0: 981.0. Samples: 771606. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:29:16,996][00556] Avg episode reward: [(0, '4.757')]
[2024-10-20 17:29:21,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 3104768. Throughput: 0: 941.6. Samples: 776158. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:29:22,000][00556] Avg episode reward: [(0, '4.859')]
[2024-10-20 17:29:23,066][02555] Updated weights for policy 0, policy_version 760 (0.0018)
[2024-10-20 17:29:26,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3804.4). Total num frames: 3129344. Throughput: 0: 938.8. Samples: 782512. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:29:26,997][00556] Avg episode reward: [(0, '4.867')]
[2024-10-20 17:29:31,733][02555] Updated weights for policy 0, policy_version 770 (0.0027)
[2024-10-20 17:29:31,997][00556] Fps is (10 sec: 4913.8, 60 sec: 3959.3, 300 sec: 3818.3). Total num frames: 3153920. Throughput: 0: 971.5. Samples: 785998. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:29:32,000][00556] Avg episode reward: [(0, '4.691')]
[2024-10-20 17:29:36,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3823.0, 300 sec: 3776.7). Total num frames: 3166208. Throughput: 0: 973.7. Samples: 791272. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:29:36,997][00556] Avg episode reward: [(0, '4.795')]
[2024-10-20 17:29:41,994][00556] Fps is (10 sec: 3277.8, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 3186688. Throughput: 0: 937.6. Samples: 796444. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:29:41,997][00556] Avg episode reward: [(0, '4.931')]
[2024-10-20 17:29:43,761][02555] Updated weights for policy 0, policy_version 780 (0.0024)
[2024-10-20 17:29:46,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 3207168. Throughput: 0: 946.5. Samples: 799670. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:29:46,997][00556] Avg episode reward: [(0, '4.690')]
[2024-10-20 17:29:52,002][00556] Fps is (10 sec: 3683.5, 60 sec: 3822.4, 300 sec: 3790.4). Total num frames: 3223552. Throughput: 0: 992.4. Samples: 805970. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:29:52,008][00556] Avg episode reward: [(0, '4.689')]
[2024-10-20 17:29:55,285][02555] Updated weights for policy 0, policy_version 790 (0.0018)
[2024-10-20 17:29:56,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3776.7). Total num frames: 3239936. Throughput: 0: 933.4. Samples: 810288. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:29:56,997][00556] Avg episode reward: [(0, '4.649')]
[2024-10-20 17:30:01,994][00556] Fps is (10 sec: 4099.2, 60 sec: 3891.3, 300 sec: 3818.3). Total num frames: 3264512. Throughput: 0: 934.1. Samples: 813640. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:30:01,997][00556] Avg episode reward: [(0, '4.710')]
[2024-10-20 17:30:04,508][02555] Updated weights for policy 0, policy_version 800 (0.0024)
[2024-10-20 17:30:06,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3804.5). Total num frames: 3284992. Throughput: 0: 986.2. Samples: 820538. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:30:06,998][00556] Avg episode reward: [(0, '4.660')]
[2024-10-20 17:30:11,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3776.6). Total num frames: 3297280. Throughput: 0: 941.7. Samples: 824890. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:30:11,997][00556] Avg episode reward: [(0, '4.815')]
[2024-10-20 17:30:16,341][02555] Updated weights for policy 0, policy_version 810 (0.0059)
[2024-10-20 17:30:16,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3804.4). Total num frames: 3317760. Throughput: 0: 921.1. Samples: 827446. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:30:17,002][00556] Avg episode reward: [(0, '4.636')]
[2024-10-20 17:30:21,994][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3818.3). Total num frames: 3342336. Throughput: 0: 957.6. Samples: 834366. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:30:21,998][00556] Avg episode reward: [(0, '4.725')]
[2024-10-20 17:30:26,937][02555] Updated weights for policy 0, policy_version 820 (0.0026)
[2024-10-20 17:30:26,994][00556] Fps is (10 sec: 4096.1, 60 sec: 3822.9, 300 sec: 3790.5). Total num frames: 3358720. Throughput: 0: 961.3. Samples: 839702. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:30:26,997][00556] Avg episode reward: [(0, '4.849')]
[2024-10-20 17:30:31,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.6, 300 sec: 3790.5). Total num frames: 3375104. Throughput: 0: 937.1. Samples: 841838. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:30:31,998][00556] Avg episode reward: [(0, '4.802')]
[2024-10-20 17:30:36,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3818.3). Total num frames: 3395584. Throughput: 0: 940.9. Samples: 848304. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:30:37,002][00556] Avg episode reward: [(0, '4.803')]
[2024-10-20 17:30:37,042][02555] Updated weights for policy 0, policy_version 830 (0.0036)
[2024-10-20 17:30:41,997][00556] Fps is (10 sec: 4095.0, 60 sec: 3822.8, 300 sec: 3804.4). Total num frames: 3416064. Throughput: 0: 985.5. Samples: 854636. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-10-20 17:30:41,999][00556] Avg episode reward: [(0, '5.010')]
[2024-10-20 17:30:46,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3790.6). Total num frames: 3432448. Throughput: 0: 954.5. Samples: 856594. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:30:46,999][00556] Avg episode reward: [(0, '5.008')]
[2024-10-20 17:30:48,848][02555] Updated weights for policy 0, policy_version 840 (0.0036)
[2024-10-20 17:30:52,000][00556] Fps is (10 sec: 3685.1, 60 sec: 3823.1, 300 sec: 3804.3). Total num frames: 3452928. Throughput: 0: 924.4. Samples: 862142. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:30:52,004][00556] Avg episode reward: [(0, '4.853')]
[2024-10-20 17:30:52,014][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000843_3452928.pth...
[2024-10-20 17:30:52,170][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000620_2539520.pth
[2024-10-20 17:30:56,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 3473408. Throughput: 0: 977.6. Samples: 868884. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:30:56,999][00556] Avg episode reward: [(0, '4.693')]
[2024-10-20 17:30:58,249][02555] Updated weights for policy 0, policy_version 850 (0.0028)
[2024-10-20 17:31:01,994][00556] Fps is (10 sec: 3688.6, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 3489792. Throughput: 0: 979.2. Samples: 871508. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:31:01,997][00556] Avg episode reward: [(0, '4.726')]
[2024-10-20 17:31:06,994][00556] Fps is (10 sec: 3686.3, 60 sec: 3754.6, 300 sec: 3804.4). Total num frames: 3510272. Throughput: 0: 929.9. Samples: 876212. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:31:06,997][00556] Avg episode reward: [(0, '4.915')]
[2024-10-20 17:31:09,487][02555] Updated weights for policy 0, policy_version 860 (0.0019)
[2024-10-20 17:31:11,994][00556] Fps is (10 sec: 4095.9, 60 sec: 3891.2, 300 sec: 3818.3). Total num frames: 3530752. Throughput: 0: 969.4. Samples: 883326. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:31:11,997][00556] Avg episode reward: [(0, '4.967')]
[2024-10-20 17:31:16,994][00556] Fps is (10 sec: 4096.1, 60 sec: 3891.2, 300 sec: 3804.4). Total num frames: 3551232. Throughput: 0: 999.7. Samples: 886824. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:31:17,001][00556] Avg episode reward: [(0, '5.088')]
[2024-10-20 17:31:20,733][02555] Updated weights for policy 0, policy_version 870 (0.0034)
[2024-10-20 17:31:21,994][00556] Fps is (10 sec: 3686.5, 60 sec: 3754.7, 300 sec: 3804.4). Total num frames: 3567616. Throughput: 0: 947.2. Samples: 890930. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:31:21,998][00556] Avg episode reward: [(0, '5.315')]
[2024-10-20 17:31:26,997][00556] Fps is (10 sec: 3685.5, 60 sec: 3822.8, 300 sec: 3818.3). Total num frames: 3588096. Throughput: 0: 944.8. Samples: 897150. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:31:27,004][00556] Avg episode reward: [(0, '5.374')]
[2024-10-20 17:31:27,007][02541] Saving new best policy, reward=5.374!
[2024-10-20 17:31:30,119][02555] Updated weights for policy 0, policy_version 880 (0.0024)
[2024-10-20 17:31:32,014][00556] Fps is (10 sec: 4496.8, 60 sec: 3958.2, 300 sec: 3831.9). Total num frames: 3612672. Throughput: 0: 976.5. Samples: 900556. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:31:32,024][00556] Avg episode reward: [(0, '5.407')]
[2024-10-20 17:31:32,050][02541] Saving new best policy, reward=5.407!
[2024-10-20 17:31:36,998][00556] Fps is (10 sec: 3685.7, 60 sec: 3822.7, 300 sec: 3790.5). Total num frames: 3624960. Throughput: 0: 968.2. Samples: 905708. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:31:37,001][00556] Avg episode reward: [(0, '5.461')]
[2024-10-20 17:31:37,003][02541] Saving new best policy, reward=5.461!
[2024-10-20 17:31:41,994][00556] Fps is (10 sec: 2872.8, 60 sec: 3754.8, 300 sec: 3804.5). Total num frames: 3641344. Throughput: 0: 937.2. Samples: 911056. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:31:41,996][00556] Avg episode reward: [(0, '5.237')]
[2024-10-20 17:31:42,066][02555] Updated weights for policy 0, policy_version 890 (0.0045)
[2024-10-20 17:31:46,994][00556] Fps is (10 sec: 4097.8, 60 sec: 3891.2, 300 sec: 3818.3). Total num frames: 3665920. Throughput: 0: 952.3. Samples: 914362. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-10-20 17:31:46,997][00556] Avg episode reward: [(0, '4.998')]
[2024-10-20 17:31:51,996][00556] Fps is (10 sec: 4095.5, 60 sec: 3823.2, 300 sec: 3804.4). Total num frames: 3682304. Throughput: 0: 978.7. Samples: 920256. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:31:52,000][00556] Avg episode reward: [(0, '4.980')]
[2024-10-20 17:31:52,868][02555] Updated weights for policy 0, policy_version 900 (0.0030)
[2024-10-20 17:31:56,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3804.4). Total num frames: 3698688. Throughput: 0: 919.6. Samples: 924708. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:31:56,997][00556] Avg episode reward: [(0, '4.915')]
[2024-10-20 17:32:01,994][00556] Fps is (10 sec: 3686.9, 60 sec: 3822.9, 300 sec: 3818.3). Total num frames: 3719168. Throughput: 0: 916.8. Samples: 928082. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:32:01,997][00556] Avg episode reward: [(0, '4.540')]
[2024-10-20 17:32:03,085][02555] Updated weights for policy 0, policy_version 910 (0.0024)
[2024-10-20 17:32:06,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3823.0, 300 sec: 3804.4). Total num frames: 3739648. Throughput: 0: 976.3. Samples: 934864. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:32:06,998][00556] Avg episode reward: [(0, '4.468')]
[2024-10-20 17:32:11,998][00556] Fps is (10 sec: 3685.0, 60 sec: 3754.4, 300 sec: 3804.4). Total num frames: 3756032. Throughput: 0: 930.0. Samples: 939000. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:32:12,004][00556] Avg episode reward: [(0, '4.704')]
[2024-10-20 17:32:14,915][02555] Updated weights for policy 0, policy_version 920 (0.0024)
[2024-10-20 17:32:16,995][00556] Fps is (10 sec: 3686.2, 60 sec: 3754.6, 300 sec: 3818.3). Total num frames: 3776512. Throughput: 0: 918.6. Samples: 941874. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:32:17,001][00556] Avg episode reward: [(0, '4.778')]
[2024-10-20 17:32:21,994][00556] Fps is (10 sec: 4097.5, 60 sec: 3822.9, 300 sec: 3818.3). Total num frames: 3796992. Throughput: 0: 952.9. Samples: 948586. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:32:21,997][00556] Avg episode reward: [(0, '4.707')]
[2024-10-20 17:32:25,209][02555] Updated weights for policy 0, policy_version 930 (0.0024)
[2024-10-20 17:32:26,994][00556] Fps is (10 sec: 3686.6, 60 sec: 3754.8, 300 sec: 3790.5). Total num frames: 3813376. Throughput: 0: 946.4. Samples: 953646. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:32:27,001][00556] Avg episode reward: [(0, '4.644')]
[2024-10-20 17:32:31,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3619.3, 300 sec: 3804.4). Total num frames: 3829760. Throughput: 0: 920.1. Samples: 955766. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:32:31,997][00556] Avg episode reward: [(0, '4.634')]
[2024-10-20 17:32:35,894][02555] Updated weights for policy 0, policy_version 940 (0.0047)
[2024-10-20 17:32:36,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3823.2, 300 sec: 3818.3). Total num frames: 3854336. Throughput: 0: 934.0. Samples: 962284. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:32:37,003][00556] Avg episode reward: [(0, '4.554')]
[2024-10-20 17:32:41,994][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3804.4). Total num frames: 3870720. Throughput: 0: 971.2. Samples: 968414. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:32:42,001][00556] Avg episode reward: [(0, '4.386')]
[2024-10-20 17:32:46,994][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3790.6). Total num frames: 3887104. Throughput: 0: 941.4. Samples: 970446. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:32:46,997][00556] Avg episode reward: [(0, '4.390')]
[2024-10-20 17:32:47,676][02555] Updated weights for policy 0, policy_version 950 (0.0015)
[2024-10-20 17:32:51,994][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.8, 300 sec: 3818.3). Total num frames: 3907584. Throughput: 0: 921.0. Samples: 976308. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:32:52,001][00556] Avg episode reward: [(0, '4.427')]
[2024-10-20 17:32:52,052][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000955_3911680.pth...
[2024-10-20 17:32:52,209][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000731_2994176.pth
[2024-10-20 17:32:56,572][02555] Updated weights for policy 0, policy_version 960 (0.0034)
[2024-10-20 17:32:56,998][00556] Fps is (10 sec: 4503.7, 60 sec: 3890.9, 300 sec: 3818.3). Total num frames: 3932160. Throughput: 0: 979.6. Samples: 983082. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:32:57,003][00556] Avg episode reward: [(0, '4.519')]
[2024-10-20 17:33:02,001][00556] Fps is (10 sec: 3683.9, 60 sec: 3754.2, 300 sec: 3790.5). Total num frames: 3944448. Throughput: 0: 966.5. Samples: 985372. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:33:02,011][00556] Avg episode reward: [(0, '4.563')]
[2024-10-20 17:33:06,994][00556] Fps is (10 sec: 3278.1, 60 sec: 3754.7, 300 sec: 3804.4). Total num frames: 3964928. Throughput: 0: 920.9. Samples: 990028. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:33:06,996][00556] Avg episode reward: [(0, '4.668')]
[2024-10-20 17:33:08,575][02555] Updated weights for policy 0, policy_version 970 (0.0027)
[2024-10-20 17:33:11,994][00556] Fps is (10 sec: 4098.7, 60 sec: 3823.2, 300 sec: 3818.3). Total num frames: 3985408. Throughput: 0: 959.4. Samples: 996818. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:33:11,996][00556] Avg episode reward: [(0, '4.825')]
[2024-10-20 17:33:16,991][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-10-20 17:33:17,016][02541] Stopping Batcher_0...
[2024-10-20 17:33:17,016][02541] Loop batcher_evt_loop terminating...
[2024-10-20 17:33:17,016][00556] Component Batcher_0 stopped!
[2024-10-20 17:33:17,094][02555] Weights refcount: 2 0
[2024-10-20 17:33:17,096][02555] Stopping InferenceWorker_p0-w0...
[2024-10-20 17:33:17,096][02555] Loop inference_proc0-0_evt_loop terminating...
[2024-10-20 17:33:17,098][00556] Component InferenceWorker_p0-w0 stopped!
[2024-10-20 17:33:17,180][02541] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000843_3452928.pth
[2024-10-20 17:33:17,217][02541] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-10-20 17:33:17,478][00556] Component LearnerWorker_p0 stopped!
[2024-10-20 17:33:17,480][02541] Stopping LearnerWorker_p0...
[2024-10-20 17:33:17,484][02541] Loop learner_proc0_evt_loop terminating...
[2024-10-20 17:33:17,593][00556] Component RolloutWorker_w2 stopped!
[2024-10-20 17:33:17,596][02558] Stopping RolloutWorker_w2...
[2024-10-20 17:33:17,598][02558] Loop rollout_proc2_evt_loop terminating...
[2024-10-20 17:33:17,630][00556] Component RolloutWorker_w0 stopped!
[2024-10-20 17:33:17,633][02554] Stopping RolloutWorker_w0...
[2024-10-20 17:33:17,642][02554] Loop rollout_proc0_evt_loop terminating...
[2024-10-20 17:33:17,670][00556] Component RolloutWorker_w6 stopped!
[2024-10-20 17:33:17,673][02559] Stopping RolloutWorker_w6...
[2024-10-20 17:33:17,684][00556] Component RolloutWorker_w4 stopped!
[2024-10-20 17:33:17,688][02560] Stopping RolloutWorker_w4...
[2024-10-20 17:33:17,689][02560] Loop rollout_proc4_evt_loop terminating...
[2024-10-20 17:33:17,674][02559] Loop rollout_proc6_evt_loop terminating...
[2024-10-20 17:33:17,729][02562] Stopping RolloutWorker_w7...
[2024-10-20 17:33:17,730][00556] Component RolloutWorker_w7 stopped!
[2024-10-20 17:33:17,730][02562] Loop rollout_proc7_evt_loop terminating...
[2024-10-20 17:33:17,761][00556] Component RolloutWorker_w5 stopped!
[2024-10-20 17:33:17,765][02561] Stopping RolloutWorker_w5...
[2024-10-20 17:33:17,767][02561] Loop rollout_proc5_evt_loop terminating...
[2024-10-20 17:33:17,780][00556] Component RolloutWorker_w3 stopped!
[2024-10-20 17:33:17,788][02557] Stopping RolloutWorker_w3...
[2024-10-20 17:33:17,789][02557] Loop rollout_proc3_evt_loop terminating...
[2024-10-20 17:33:17,796][00556] Component RolloutWorker_w1 stopped!
[2024-10-20 17:33:17,798][00556] Waiting for process learner_proc0 to stop...
[2024-10-20 17:33:17,802][02556] Stopping RolloutWorker_w1...
[2024-10-20 17:33:17,803][02556] Loop rollout_proc1_evt_loop terminating...
[2024-10-20 17:33:19,784][00556] Waiting for process inference_proc0-0 to join...
[2024-10-20 17:33:19,789][00556] Waiting for process rollout_proc0 to join...
[2024-10-20 17:33:21,985][00556] Waiting for process rollout_proc1 to join...
[2024-10-20 17:33:21,989][00556] Waiting for process rollout_proc2 to join...
[2024-10-20 17:33:21,994][00556] Waiting for process rollout_proc3 to join...
[2024-10-20 17:33:21,997][00556] Waiting for process rollout_proc4 to join...
[2024-10-20 17:33:22,002][00556] Waiting for process rollout_proc5 to join...
[2024-10-20 17:33:22,004][00556] Waiting for process rollout_proc6 to join...
[2024-10-20 17:33:22,011][00556] Waiting for process rollout_proc7 to join...
[2024-10-20 17:33:22,017][00556] Batcher 0 profile tree view:
batching: 26.2966, releasing_batches: 0.0304
[2024-10-20 17:33:22,019][00556] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
wait_policy_total: 427.7291
update_model: 9.1894
weight_update: 0.0024
one_step: 0.0246
handle_policy_step: 591.8972
deserialize: 15.4524, stack: 3.1635, obs_to_device_normalize: 120.7706, forward: 315.7641, send_messages: 28.2282
prepare_outputs: 79.9414
to_cpu: 45.7012
[2024-10-20 17:33:22,021][00556] Learner 0 profile tree view:
misc: 0.0056, prepare_batch: 14.0403
train: 75.1067
epoch_init: 0.0132, minibatch_init: 0.0119, losses_postprocess: 0.6113, kl_divergence: 0.7346, after_optimizer: 34.5945
calculate_losses: 26.7507
losses_init: 0.0060, forward_head: 1.2384, bptt_initial: 18.0547, tail: 1.0522, advantages_returns: 0.2671, losses: 3.7825
bptt: 2.0385
bptt_forward_core: 1.9446
update: 11.7477
clip: 0.8929
[2024-10-20 17:33:22,024][00556] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.3558, enqueue_policy_requests: 103.7466, env_step: 832.9414, overhead: 13.4578, complete_rollouts: 6.5863
save_policy_outputs: 20.6964
split_output_tensors: 8.2401
[2024-10-20 17:33:22,026][00556] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.3766, enqueue_policy_requests: 105.3575, env_step: 832.6607, overhead: 13.3658, complete_rollouts: 6.9517
save_policy_outputs: 20.5847
split_output_tensors: 8.1255
[2024-10-20 17:33:22,028][00556] Loop Runner_EvtLoop terminating...
[2024-10-20 17:33:22,030][00556] Runner profile tree view:
main_loop: 1098.7486
[2024-10-20 17:33:22,031][00556] Collected {0: 4005888}, FPS: 3645.9
[2024-10-20 17:33:22,617][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2024-10-20 17:33:22,619][00556] Overriding arg 'num_workers' with value 1 passed from command line
[2024-10-20 17:33:22,621][00556] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-10-20 17:33:22,623][00556] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-10-20 17:33:22,625][00556] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-10-20 17:33:22,627][00556] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-10-20 17:33:22,628][00556] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2024-10-20 17:33:22,629][00556] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-10-20 17:33:22,630][00556] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2024-10-20 17:33:22,631][00556] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2024-10-20 17:33:22,633][00556] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-10-20 17:33:22,634][00556] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-10-20 17:33:22,635][00556] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-10-20 17:33:22,636][00556] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-10-20 17:33:22,637][00556] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-10-20 17:33:22,671][00556] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:33:22,674][00556] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 17:33:22,676][00556] RunningMeanStd input shape: (1,)
[2024-10-20 17:33:22,694][00556] ConvEncoder: input_channels=3
[2024-10-20 17:33:22,796][00556] Conv encoder output size: 512
[2024-10-20 17:33:22,797][00556] Policy head output size: 512
[2024-10-20 17:33:22,969][00556] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-10-20 17:33:23,797][00556] Num frames 100...
[2024-10-20 17:33:23,922][00556] Num frames 200...
[2024-10-20 17:33:24,049][00556] Num frames 300...
[2024-10-20 17:33:24,206][00556] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2024-10-20 17:33:24,208][00556] Avg episode reward: 3.840, avg true_objective: 3.840
[2024-10-20 17:33:24,232][00556] Num frames 400...
[2024-10-20 17:33:24,359][00556] Num frames 500...
[2024-10-20 17:33:24,485][00556] Num frames 600...
[2024-10-20 17:33:24,618][00556] Num frames 700...
[2024-10-20 17:33:24,757][00556] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2024-10-20 17:33:24,759][00556] Avg episode reward: 3.840, avg true_objective: 3.840
[2024-10-20 17:33:24,801][00556] Num frames 800...
[2024-10-20 17:33:24,924][00556] Num frames 900...
[2024-10-20 17:33:25,058][00556] Num frames 1000...
[2024-10-20 17:33:25,180][00556] Num frames 1100...
[2024-10-20 17:33:25,303][00556] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2024-10-20 17:33:25,306][00556] Avg episode reward: 3.840, avg true_objective: 3.840
[2024-10-20 17:33:25,364][00556] Num frames 1200...
[2024-10-20 17:33:25,501][00556] Num frames 1300...
[2024-10-20 17:33:25,633][00556] Num frames 1400...
[2024-10-20 17:33:25,752][00556] Num frames 1500...
[2024-10-20 17:33:25,876][00556] Num frames 1600...
[2024-10-20 17:33:25,970][00556] Avg episode rewards: #0: 4.330, true rewards: #0: 4.080
[2024-10-20 17:33:25,973][00556] Avg episode reward: 4.330, avg true_objective: 4.080
[2024-10-20 17:33:26,058][00556] Num frames 1700...
[2024-10-20 17:33:26,183][00556] Num frames 1800...
[2024-10-20 17:33:26,309][00556] Num frames 1900...
[2024-10-20 17:33:26,444][00556] Num frames 2000...
[2024-10-20 17:33:26,600][00556] Avg episode rewards: #0: 4.560, true rewards: #0: 4.160
[2024-10-20 17:33:26,602][00556] Avg episode reward: 4.560, avg true_objective: 4.160
[2024-10-20 17:33:26,630][00556] Num frames 2100...
[2024-10-20 17:33:26,753][00556] Num frames 2200...
[2024-10-20 17:33:26,876][00556] Num frames 2300...
[2024-10-20 17:33:26,979][00556] Avg episode rewards: #0: 4.227, true rewards: #0: 3.893
[2024-10-20 17:33:26,980][00556] Avg episode reward: 4.227, avg true_objective: 3.893
[2024-10-20 17:33:27,065][00556] Num frames 2400...
[2024-10-20 17:33:27,187][00556] Num frames 2500...
[2024-10-20 17:33:27,314][00556] Num frames 2600...
[2024-10-20 17:33:27,450][00556] Num frames 2700...
[2024-10-20 17:33:27,573][00556] Num frames 2800...
[2024-10-20 17:33:27,744][00556] Avg episode rewards: #0: 4.829, true rewards: #0: 4.114
[2024-10-20 17:33:27,746][00556] Avg episode reward: 4.829, avg true_objective: 4.114
[2024-10-20 17:33:27,774][00556] Num frames 2900...
[2024-10-20 17:33:27,898][00556] Num frames 3000...
[2024-10-20 17:33:28,021][00556] Num frames 3100...
[2024-10-20 17:33:28,143][00556] Num frames 3200...
[2024-10-20 17:33:28,280][00556] Avg episode rewards: #0: 4.705, true rewards: #0: 4.080
[2024-10-20 17:33:28,281][00556] Avg episode reward: 4.705, avg true_objective: 4.080
[2024-10-20 17:33:28,330][00556] Num frames 3300...
[2024-10-20 17:33:28,462][00556] Num frames 3400...
[2024-10-20 17:33:28,589][00556] Num frames 3500...
[2024-10-20 17:33:28,725][00556] Num frames 3600...
[2024-10-20 17:33:28,850][00556] Num frames 3700...
[2024-10-20 17:33:28,921][00556] Avg episode rewards: #0: 4.791, true rewards: #0: 4.124
[2024-10-20 17:33:28,923][00556] Avg episode reward: 4.791, avg true_objective: 4.124
[2024-10-20 17:33:29,034][00556] Num frames 3800...
[2024-10-20 17:33:29,164][00556] Num frames 3900...
[2024-10-20 17:33:29,292][00556] Num frames 4000...
[2024-10-20 17:33:29,478][00556] Avg episode rewards: #0: 4.696, true rewards: #0: 4.096
[2024-10-20 17:33:29,480][00556] Avg episode reward: 4.696, avg true_objective: 4.096
[2024-10-20 17:33:49,967][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2024-10-20 17:41:26,483][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2024-10-20 17:41:26,485][00556] Overriding arg 'num_workers' with value 1 passed from command line
[2024-10-20 17:41:26,486][00556] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-10-20 17:41:26,488][00556] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-10-20 17:41:26,489][00556] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-10-20 17:41:26,490][00556] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-10-20 17:41:26,491][00556] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2024-10-20 17:41:26,492][00556] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-10-20 17:41:26,494][00556] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2024-10-20 17:41:26,500][00556] Adding new argument 'hf_repository'='jerryvc/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2024-10-20 17:41:26,501][00556] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-10-20 17:41:26,502][00556] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-10-20 17:41:26,503][00556] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-10-20 17:41:26,504][00556] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-10-20 17:41:26,505][00556] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-10-20 17:41:26,541][00556] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 17:41:26,543][00556] RunningMeanStd input shape: (1,)
[2024-10-20 17:41:26,557][00556] ConvEncoder: input_channels=3
[2024-10-20 17:41:26,594][00556] Conv encoder output size: 512
[2024-10-20 17:41:26,595][00556] Policy head output size: 512
[2024-10-20 17:41:26,617][00556] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-10-20 17:41:27,021][00556] Num frames 100...
[2024-10-20 17:41:27,149][00556] Num frames 200...
[2024-10-20 17:41:27,272][00556] Num frames 300...
[2024-10-20 17:41:27,399][00556] Num frames 400...
[2024-10-20 17:41:27,550][00556] Num frames 500...
[2024-10-20 17:41:27,621][00556] Avg episode rewards: #0: 7.120, true rewards: #0: 5.120
[2024-10-20 17:41:27,622][00556] Avg episode reward: 7.120, avg true_objective: 5.120
[2024-10-20 17:41:27,740][00556] Num frames 600...
[2024-10-20 17:41:27,871][00556] Num frames 700...
[2024-10-20 17:41:27,999][00556] Num frames 800...
[2024-10-20 17:41:28,124][00556] Num frames 900...
[2024-10-20 17:41:28,260][00556] Avg episode rewards: #0: 6.300, true rewards: #0: 4.800
[2024-10-20 17:41:28,263][00556] Avg episode reward: 6.300, avg true_objective: 4.800
[2024-10-20 17:41:28,320][00556] Num frames 1000...
[2024-10-20 17:41:28,454][00556] Num frames 1100...
[2024-10-20 17:41:28,578][00556] Num frames 1200...
[2024-10-20 17:41:28,703][00556] Num frames 1300...
[2024-10-20 17:41:28,813][00556] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
[2024-10-20 17:41:28,815][00556] Avg episode reward: 5.480, avg true_objective: 4.480
[2024-10-20 17:41:28,888][00556] Num frames 1400...
[2024-10-20 17:41:29,017][00556] Num frames 1500...
[2024-10-20 17:41:29,139][00556] Num frames 1600...
[2024-10-20 17:41:29,270][00556] Num frames 1700...
[2024-10-20 17:41:29,435][00556] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
[2024-10-20 17:41:29,437][00556] Avg episode reward: 5.480, avg true_objective: 4.480
[2024-10-20 17:41:29,451][00556] Num frames 1800...
[2024-10-20 17:41:29,576][00556] Num frames 1900...
[2024-10-20 17:41:29,697][00556] Num frames 2000...
[2024-10-20 17:41:29,820][00556] Num frames 2100...
[2024-10-20 17:41:29,944][00556] Num frames 2200...
[2024-10-20 17:41:30,048][00556] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
[2024-10-20 17:41:30,050][00556] Avg episode reward: 5.480, avg true_objective: 4.480
[2024-10-20 17:41:30,128][00556] Num frames 2300...
[2024-10-20 17:41:30,261][00556] Num frames 2400...
[2024-10-20 17:41:30,385][00556] Num frames 2500...
[2024-10-20 17:41:30,518][00556] Num frames 2600...
[2024-10-20 17:41:30,607][00556] Avg episode rewards: #0: 5.207, true rewards: #0: 4.373
[2024-10-20 17:41:30,611][00556] Avg episode reward: 5.207, avg true_objective: 4.373
[2024-10-20 17:41:30,706][00556] Num frames 2700...
[2024-10-20 17:41:30,825][00556] Num frames 2800...
[2024-10-20 17:41:30,948][00556] Num frames 2900...
[2024-10-20 17:41:31,070][00556] Num frames 3000...
[2024-10-20 17:41:31,214][00556] Avg episode rewards: #0: 5.246, true rewards: #0: 4.389
[2024-10-20 17:41:31,218][00556] Avg episode reward: 5.246, avg true_objective: 4.389
[2024-10-20 17:41:31,257][00556] Num frames 3100...
[2024-10-20 17:41:31,384][00556] Num frames 3200...
[2024-10-20 17:41:31,521][00556] Num frames 3300...
[2024-10-20 17:41:31,645][00556] Num frames 3400...
[2024-10-20 17:41:31,784][00556] Num frames 3500...
[2024-10-20 17:41:31,962][00556] Num frames 3600...
[2024-10-20 17:41:32,156][00556] Avg episode rewards: #0: 5.725, true rewards: #0: 4.600
[2024-10-20 17:41:32,158][00556] Avg episode reward: 5.725, avg true_objective: 4.600
[2024-10-20 17:41:32,196][00556] Num frames 3700...
[2024-10-20 17:41:32,376][00556] Num frames 3800...
[2024-10-20 17:41:32,558][00556] Num frames 3900...
[2024-10-20 17:41:32,728][00556] Num frames 4000...
[2024-10-20 17:41:32,950][00556] Avg episode rewards: #0: 5.662, true rewards: #0: 4.551
[2024-10-20 17:41:32,952][00556] Avg episode reward: 5.662, avg true_objective: 4.551
[2024-10-20 17:41:32,966][00556] Num frames 4100...
[2024-10-20 17:41:33,144][00556] Num frames 4200...
[2024-10-20 17:41:33,329][00556] Num frames 4300...
[2024-10-20 17:41:33,513][00556] Num frames 4400...
[2024-10-20 17:41:33,710][00556] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
[2024-10-20 17:41:33,712][00556] Avg episode reward: 5.480, avg true_objective: 4.480
[2024-10-20 17:41:53,429][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2024-10-20 17:41:57,910][00556] The model has been pushed to https://huggingface.co/jerryvc/rl_course_vizdoom_health_gathering_supreme
[2024-10-20 17:42:35,660][00556] Environment doom_basic already registered, overwriting...
[2024-10-20 17:42:35,663][00556] Environment doom_two_colors_easy already registered, overwriting...
[2024-10-20 17:42:35,664][00556] Environment doom_two_colors_hard already registered, overwriting...
[2024-10-20 17:42:35,668][00556] Environment doom_dm already registered, overwriting...
[2024-10-20 17:42:35,670][00556] Environment doom_dwango5 already registered, overwriting...
[2024-10-20 17:42:35,671][00556] Environment doom_my_way_home_flat_actions already registered, overwriting...
[2024-10-20 17:42:35,672][00556] Environment doom_defend_the_center_flat_actions already registered, overwriting...
[2024-10-20 17:42:35,673][00556] Environment doom_my_way_home already registered, overwriting...
[2024-10-20 17:42:35,675][00556] Environment doom_deadly_corridor already registered, overwriting...
[2024-10-20 17:42:35,676][00556] Environment doom_defend_the_center already registered, overwriting...
[2024-10-20 17:42:35,678][00556] Environment doom_defend_the_line already registered, overwriting...
[2024-10-20 17:42:35,680][00556] Environment doom_health_gathering already registered, overwriting...
[2024-10-20 17:42:35,681][00556] Environment doom_health_gathering_supreme already registered, overwriting...
[2024-10-20 17:42:35,683][00556] Environment doom_battle already registered, overwriting...
[2024-10-20 17:42:35,684][00556] Environment doom_battle2 already registered, overwriting...
[2024-10-20 17:42:35,685][00556] Environment doom_duel_bots already registered, overwriting...
[2024-10-20 17:42:35,686][00556] Environment doom_deathmatch_bots already registered, overwriting...
[2024-10-20 17:42:35,687][00556] Environment doom_duel already registered, overwriting...
[2024-10-20 17:42:35,688][00556] Environment doom_deathmatch_full already registered, overwriting...
[2024-10-20 17:42:35,689][00556] Environment doom_benchmark already registered, overwriting...
[2024-10-20 17:42:35,690][00556] register_encoder_factory: <function make_vizdoom_encoder at 0x7afd65edb250>
[2024-10-20 17:42:35,716][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2024-10-20 17:42:35,717][00556] Overriding arg 'train_for_env_steps' with value 8000000 passed from command line
[2024-10-20 17:42:35,724][00556] Experiment dir /content/train_dir/default_experiment already exists!
[2024-10-20 17:42:35,726][00556] Resuming existing experiment from /content/train_dir/default_experiment...
[2024-10-20 17:42:35,728][00556] Weights and Biases integration disabled
[2024-10-20 17:42:35,732][00556] Environment var CUDA_VISIBLE_DEVICES is 0
[2024-10-20 17:42:37,855][00556] Starting experiment with the following configuration:
help=False
algo=APPO
env=doom_health_gathering_supreme
experiment=default_experiment
train_dir=/content/train_dir
restart_behavior=resume
device=gpu
seed=None
num_policies=1
async_rl=True
serial_mode=False
batched_sampling=False
num_batches_to_accumulate=2
worker_num_splits=2
policy_workers_per_policy=1
max_policy_lag=1000
num_workers=8
num_envs_per_worker=4
batch_size=1024
num_batches_per_epoch=1
num_epochs=1
rollout=32
recurrence=32
shuffle_minibatches=False
gamma=0.99
reward_scale=1.0
reward_clip=1000.0
value_bootstrap=False
normalize_returns=True
exploration_loss_coeff=0.001
value_loss_coeff=0.5
kl_loss_coeff=0.0
exploration_loss=symmetric_kl
gae_lambda=0.95
ppo_clip_ratio=0.1
ppo_clip_value=0.2
with_vtrace=False
vtrace_rho=1.0
vtrace_c=1.0
optimizer=adam
adam_eps=1e-06
adam_beta1=0.9
adam_beta2=0.999
max_grad_norm=4.0
learning_rate=0.0001
lr_schedule=constant
lr_schedule_kl_threshold=0.008
lr_adaptive_min=1e-06
lr_adaptive_max=0.01
obs_subtract_mean=0.0
obs_scale=255.0
normalize_input=True
normalize_input_keys=None
decorrelate_experience_max_seconds=0
decorrelate_envs_on_one_worker=True
actor_worker_gpus=[]
set_workers_cpu_affinity=True
force_envs_single_thread=False
default_niceness=0
log_to_file=True
experiment_summaries_interval=10
flush_summaries_interval=30
stats_avg=100
summaries_use_frameskip=True
heartbeat_interval=20
heartbeat_reporting_interval=600
train_for_env_steps=8000000
train_for_seconds=10000000000
save_every_sec=120
keep_checkpoints=2
load_checkpoint_kind=latest
save_milestones_sec=-1
save_best_every_sec=5
save_best_metric=reward
save_best_after=100000
benchmark=False
encoder_mlp_layers=[512, 512]
encoder_conv_architecture=convnet_simple
encoder_conv_mlp_layers=[512]
use_rnn=True
rnn_size=512
rnn_type=gru
rnn_num_layers=1
decoder_mlp_layers=[]
nonlinearity=elu
policy_initialization=orthogonal
policy_init_gain=1.0
actor_critic_share_weights=True
adaptive_stddev=True
continuous_tanh_scale=0.0
initial_stddev=1.0
use_env_info_cache=False
env_gpu_actions=False
env_gpu_observations=True
env_frameskip=4
env_framestack=1
pixel_format=CHW
use_record_episode_statistics=False
with_wandb=False
wandb_user=None
wandb_project=sample_factory
wandb_group=None
wandb_job_type=SF
wandb_tags=[]
with_pbt=False
pbt_mix_policies_in_one_env=True
pbt_period_env_steps=5000000
pbt_start_mutation=20000000
pbt_replace_fraction=0.3
pbt_mutation_rate=0.15
pbt_replace_reward_gap=0.1
pbt_replace_reward_gap_absolute=1e-06
pbt_optimize_gamma=False
pbt_target_objective=true_objective
pbt_perturb_min=1.1
pbt_perturb_max=1.5
num_agents=-1
num_humans=0
num_bots=-1
start_bot_difficulty=None
timelimit=None
res_w=128
res_h=72
wide_aspect_ratio=False
eval_env_frameskip=1
fps=35
command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000
cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 4000000}
git_hash=unknown
git_repo_name=not a git repository
[2024-10-20 17:42:37,856][00556] Saving configuration to /content/train_dir/default_experiment/config.json...
[2024-10-20 17:42:37,861][00556] Rollout worker 0 uses device cpu
[2024-10-20 17:42:37,862][00556] Rollout worker 1 uses device cpu
[2024-10-20 17:42:37,864][00556] Rollout worker 2 uses device cpu
[2024-10-20 17:42:37,865][00556] Rollout worker 3 uses device cpu
[2024-10-20 17:42:37,867][00556] Rollout worker 4 uses device cpu
[2024-10-20 17:42:37,869][00556] Rollout worker 5 uses device cpu
[2024-10-20 17:42:37,870][00556] Rollout worker 6 uses device cpu
[2024-10-20 17:42:37,871][00556] Rollout worker 7 uses device cpu
[2024-10-20 17:42:37,944][00556] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:42:37,946][00556] InferenceWorker_p0-w0: min num requests: 2
[2024-10-20 17:42:37,987][00556] Starting all processes...
[2024-10-20 17:42:37,990][00556] Starting process learner_proc0
[2024-10-20 17:42:38,037][00556] Starting all processes...
[2024-10-20 17:42:38,044][00556] Starting process inference_proc0-0
[2024-10-20 17:42:38,044][00556] Starting process rollout_proc0
[2024-10-20 17:42:38,046][00556] Starting process rollout_proc1
[2024-10-20 17:42:38,046][00556] Starting process rollout_proc2
[2024-10-20 17:42:38,046][00556] Starting process rollout_proc3
[2024-10-20 17:42:38,046][00556] Starting process rollout_proc4
[2024-10-20 17:42:38,046][00556] Starting process rollout_proc5
[2024-10-20 17:42:38,046][00556] Starting process rollout_proc6
[2024-10-20 17:42:38,046][00556] Starting process rollout_proc7
[2024-10-20 17:42:53,558][13111] Worker 3 uses CPU cores [1]
[2024-10-20 17:42:53,579][13094] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:42:53,580][13094] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2024-10-20 17:42:53,604][13107] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:42:53,606][13107] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2024-10-20 17:42:53,638][13094] Num visible devices: 1
[2024-10-20 17:42:53,683][13094] Starting seed is not provided
[2024-10-20 17:42:53,685][13094] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:42:53,686][13094] Initializing actor-critic model on device cuda:0
[2024-10-20 17:42:53,687][13094] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 17:42:53,688][13094] RunningMeanStd input shape: (1,)
[2024-10-20 17:42:53,713][13107] Num visible devices: 1
[2024-10-20 17:42:53,758][13094] ConvEncoder: input_channels=3
[2024-10-20 17:42:53,874][13112] Worker 5 uses CPU cores [1]
[2024-10-20 17:42:53,974][13109] Worker 1 uses CPU cores [1]
[2024-10-20 17:42:54,079][13115] Worker 7 uses CPU cores [1]
[2024-10-20 17:42:54,080][13113] Worker 4 uses CPU cores [0]
[2024-10-20 17:42:54,130][13110] Worker 2 uses CPU cores [0]
[2024-10-20 17:42:54,201][13108] Worker 0 uses CPU cores [0]
[2024-10-20 17:42:54,211][13094] Conv encoder output size: 512
[2024-10-20 17:42:54,213][13094] Policy head output size: 512
[2024-10-20 17:42:54,222][13114] Worker 6 uses CPU cores [0]
[2024-10-20 17:42:54,234][13094] Created Actor Critic model with architecture:
[2024-10-20 17:42:54,234][13094] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2024-10-20 17:42:54,359][13094] Using optimizer <class 'torch.optim.adam.Adam'>
[2024-10-20 17:42:54,991][13094] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2024-10-20 17:42:55,028][13094] Loading model from checkpoint
[2024-10-20 17:42:55,030][13094] Loaded experiment state at self.train_step=978, self.env_steps=4005888
[2024-10-20 17:42:55,031][13094] Initialized policy 0 weights for model version 978
[2024-10-20 17:42:55,035][13094] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2024-10-20 17:42:55,043][13094] LearnerWorker_p0 finished initialization!
[2024-10-20 17:42:55,129][13107] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 17:42:55,131][13107] RunningMeanStd input shape: (1,)
[2024-10-20 17:42:55,143][13107] ConvEncoder: input_channels=3
[2024-10-20 17:42:55,247][13107] Conv encoder output size: 512
[2024-10-20 17:42:55,248][13107] Policy head output size: 512
[2024-10-20 17:42:55,301][00556] Inference worker 0-0 is ready!
[2024-10-20 17:42:55,302][00556] All inference workers are ready! Signal rollout workers to start!
[2024-10-20 17:42:55,505][13108] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,506][13113] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,509][13110] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,510][13114] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,515][13112] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,515][13111] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,512][13115] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,525][13109] Doom resolution: 160x120, resize resolution: (128, 72)
[2024-10-20 17:42:55,732][00556] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 4005888. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-10-20 17:42:56,491][13112] Decorrelating experience for 0 frames...
[2024-10-20 17:42:56,498][13109] Decorrelating experience for 0 frames...
[2024-10-20 17:42:56,881][13114] Decorrelating experience for 0 frames...
[2024-10-20 17:42:56,901][13110] Decorrelating experience for 0 frames...
[2024-10-20 17:42:56,909][13113] Decorrelating experience for 0 frames...
[2024-10-20 17:42:57,471][13109] Decorrelating experience for 32 frames...
[2024-10-20 17:42:57,936][00556] Heartbeat connected on Batcher_0
[2024-10-20 17:42:57,944][00556] Heartbeat connected on LearnerWorker_p0
[2024-10-20 17:42:57,998][00556] Heartbeat connected on InferenceWorker_p0-w0
[2024-10-20 17:42:58,332][13114] Decorrelating experience for 32 frames...
[2024-10-20 17:42:58,348][13110] Decorrelating experience for 32 frames...
[2024-10-20 17:42:58,399][13108] Decorrelating experience for 0 frames...
[2024-10-20 17:42:58,830][13112] Decorrelating experience for 32 frames...
[2024-10-20 17:42:58,841][13115] Decorrelating experience for 0 frames...
[2024-10-20 17:42:59,630][13109] Decorrelating experience for 64 frames...
[2024-10-20 17:43:00,297][13113] Decorrelating experience for 32 frames...
[2024-10-20 17:43:00,332][13108] Decorrelating experience for 32 frames...
[2024-10-20 17:43:00,408][13111] Decorrelating experience for 0 frames...
[2024-10-20 17:43:00,732][00556] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-10-20 17:43:00,807][13114] Decorrelating experience for 64 frames...
[2024-10-20 17:43:00,811][13110] Decorrelating experience for 64 frames...
[2024-10-20 17:43:01,381][13109] Decorrelating experience for 96 frames...
[2024-10-20 17:43:01,623][00556] Heartbeat connected on RolloutWorker_w1
[2024-10-20 17:43:01,840][13114] Decorrelating experience for 96 frames...
[2024-10-20 17:43:02,372][13115] Decorrelating experience for 32 frames...
[2024-10-20 17:43:02,396][00556] Heartbeat connected on RolloutWorker_w6
[2024-10-20 17:43:03,033][13112] Decorrelating experience for 64 frames...
[2024-10-20 17:43:03,525][13108] Decorrelating experience for 64 frames...
[2024-10-20 17:43:04,677][13115] Decorrelating experience for 64 frames...
[2024-10-20 17:43:04,830][13110] Decorrelating experience for 96 frames...
[2024-10-20 17:43:05,205][00556] Heartbeat connected on RolloutWorker_w2
[2024-10-20 17:43:05,295][13112] Decorrelating experience for 96 frames...
[2024-10-20 17:43:05,425][13113] Decorrelating experience for 64 frames...
[2024-10-20 17:43:05,634][13108] Decorrelating experience for 96 frames...
[2024-10-20 17:43:05,732][00556] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 4005888. Throughput: 0: 80.8. Samples: 808. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2024-10-20 17:43:05,735][00556] Avg episode reward: [(0, '3.382')]
[2024-10-20 17:43:05,893][00556] Heartbeat connected on RolloutWorker_w5
[2024-10-20 17:43:06,179][00556] Heartbeat connected on RolloutWorker_w0
[2024-10-20 17:43:08,107][13094] Signal inference workers to stop experience collection...
[2024-10-20 17:43:08,114][13107] InferenceWorker_p0-w0: stopping experience collection
[2024-10-20 17:43:08,388][13113] Decorrelating experience for 96 frames...
[2024-10-20 17:43:08,426][13111] Decorrelating experience for 32 frames...
[2024-10-20 17:43:08,491][13115] Decorrelating experience for 96 frames...
[2024-10-20 17:43:08,573][00556] Heartbeat connected on RolloutWorker_w4
[2024-10-20 17:43:08,667][00556] Heartbeat connected on RolloutWorker_w7
[2024-10-20 17:43:09,051][13111] Decorrelating experience for 64 frames...
[2024-10-20 17:43:09,471][13111] Decorrelating experience for 96 frames...
[2024-10-20 17:43:09,551][00556] Heartbeat connected on RolloutWorker_w3
[2024-10-20 17:43:09,890][13094] Signal inference workers to resume experience collection...
[2024-10-20 17:43:09,890][13107] InferenceWorker_p0-w0: resuming experience collection
[2024-10-20 17:43:10,732][00556] Fps is (10 sec: 409.6, 60 sec: 273.1, 300 sec: 273.1). Total num frames: 4009984. Throughput: 0: 180.8. Samples: 2712. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
[2024-10-20 17:43:10,738][00556] Avg episode reward: [(0, '3.453')]
[2024-10-20 17:43:15,732][00556] Fps is (10 sec: 2457.5, 60 sec: 1228.8, 300 sec: 1228.8). Total num frames: 4030464. Throughput: 0: 277.4. Samples: 5548. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:43:15,737][00556] Avg episode reward: [(0, '3.936')]
[2024-10-20 17:43:20,732][00556] Fps is (10 sec: 3276.8, 60 sec: 1474.6, 300 sec: 1474.6). Total num frames: 4042752. Throughput: 0: 373.3. Samples: 9332. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:43:20,735][00556] Avg episode reward: [(0, '4.227')]
[2024-10-20 17:43:21,421][13107] Updated weights for policy 0, policy_version 988 (0.0032)
[2024-10-20 17:43:25,732][00556] Fps is (10 sec: 3276.9, 60 sec: 1911.5, 300 sec: 1911.5). Total num frames: 4063232. Throughput: 0: 507.3. Samples: 15218. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:43:25,735][00556] Avg episode reward: [(0, '4.741')]
[2024-10-20 17:43:30,555][13107] Updated weights for policy 0, policy_version 998 (0.0033)
[2024-10-20 17:43:30,732][00556] Fps is (10 sec: 4505.7, 60 sec: 2340.6, 300 sec: 2340.6). Total num frames: 4087808. Throughput: 0: 530.6. Samples: 18570. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:43:30,738][00556] Avg episode reward: [(0, '4.732')]
[2024-10-20 17:43:35,732][00556] Fps is (10 sec: 3686.4, 60 sec: 2355.2, 300 sec: 2355.2). Total num frames: 4100096. Throughput: 0: 586.8. Samples: 23472. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:43:35,735][00556] Avg episode reward: [(0, '4.839')]
[2024-10-20 17:43:40,732][00556] Fps is (10 sec: 3276.8, 60 sec: 2548.6, 300 sec: 2548.6). Total num frames: 4120576. Throughput: 0: 640.1. Samples: 28804. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:43:40,735][00556] Avg episode reward: [(0, '4.527')]
[2024-10-20 17:43:42,520][13107] Updated weights for policy 0, policy_version 1008 (0.0023)
[2024-10-20 17:43:45,732][00556] Fps is (10 sec: 4096.0, 60 sec: 2703.4, 300 sec: 2703.4). Total num frames: 4141056. Throughput: 0: 715.9. Samples: 32214. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:43:45,734][00556] Avg episode reward: [(0, '4.514')]
[2024-10-20 17:43:50,732][00556] Fps is (10 sec: 3686.4, 60 sec: 2755.5, 300 sec: 2755.5). Total num frames: 4157440. Throughput: 0: 834.2. Samples: 38346. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:43:50,734][00556] Avg episode reward: [(0, '4.586')]
[2024-10-20 17:43:54,457][13107] Updated weights for policy 0, policy_version 1018 (0.0019)
[2024-10-20 17:43:55,732][00556] Fps is (10 sec: 3276.8, 60 sec: 2798.9, 300 sec: 2798.9). Total num frames: 4173824. Throughput: 0: 881.2. Samples: 42366. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:43:55,735][00556] Avg episode reward: [(0, '4.691')]
[2024-10-20 17:44:00,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3140.3, 300 sec: 2898.7). Total num frames: 4194304. Throughput: 0: 891.9. Samples: 45682. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:44:00,734][00556] Avg episode reward: [(0, '4.854')]
[2024-10-20 17:44:03,774][13107] Updated weights for policy 0, policy_version 1028 (0.0029)
[2024-10-20 17:44:05,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3549.9, 300 sec: 3042.7). Total num frames: 4218880. Throughput: 0: 960.8. Samples: 52566. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:44:05,738][00556] Avg episode reward: [(0, '4.895')]
[2024-10-20 17:44:10,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 3003.7). Total num frames: 4231168. Throughput: 0: 927.4. Samples: 56952. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-10-20 17:44:10,736][00556] Avg episode reward: [(0, '4.792')]
[2024-10-20 17:44:15,411][13107] Updated weights for policy 0, policy_version 1038 (0.0043)
[2024-10-20 17:44:15,733][00556] Fps is (10 sec: 3276.7, 60 sec: 3686.4, 300 sec: 3072.0). Total num frames: 4251648. Throughput: 0: 912.4. Samples: 59630. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:44:15,734][00556] Avg episode reward: [(0, '4.549')]
[2024-10-20 17:44:20,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3132.2). Total num frames: 4272128. Throughput: 0: 955.3. Samples: 66460. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:44:20,736][00556] Avg episode reward: [(0, '4.646')]
[2024-10-20 17:44:25,732][00556] Fps is (10 sec: 3686.5, 60 sec: 3754.7, 300 sec: 3140.3). Total num frames: 4288512. Throughput: 0: 949.8. Samples: 71544. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:44:25,734][00556] Avg episode reward: [(0, '4.754')]
[2024-10-20 17:44:26,186][13107] Updated weights for policy 0, policy_version 1048 (0.0021)
[2024-10-20 17:44:30,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3147.5). Total num frames: 4304896. Throughput: 0: 919.3. Samples: 73584. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:44:30,734][00556] Avg episode reward: [(0, '4.854')]
[2024-10-20 17:44:35,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3235.8). Total num frames: 4329472. Throughput: 0: 929.7. Samples: 80184. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:44:35,736][00556] Avg episode reward: [(0, '5.021')]
[2024-10-20 17:44:35,747][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001057_4329472.pth...
[2024-10-20 17:44:35,875][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000955_3911680.pth
[2024-10-20 17:44:36,413][13107] Updated weights for policy 0, policy_version 1058 (0.0021)
[2024-10-20 17:44:40,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3276.8). Total num frames: 4349952. Throughput: 0: 979.6. Samples: 86446. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:44:40,734][00556] Avg episode reward: [(0, '4.849')]
[2024-10-20 17:44:45,732][00556] Fps is (10 sec: 3276.7, 60 sec: 3686.4, 300 sec: 3239.6). Total num frames: 4362240. Throughput: 0: 953.0. Samples: 88566. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2024-10-20 17:44:45,736][00556] Avg episode reward: [(0, '4.541')]
[2024-10-20 17:44:47,999][13107] Updated weights for policy 0, policy_version 1068 (0.0020)
[2024-10-20 17:44:50,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3312.4). Total num frames: 4386816. Throughput: 0: 925.2. Samples: 94198. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:44:50,735][00556] Avg episode reward: [(0, '4.307')]
[2024-10-20 17:44:55,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3345.1). Total num frames: 4407296. Throughput: 0: 976.7. Samples: 100902. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:44:55,739][00556] Avg episode reward: [(0, '4.596')]
[2024-10-20 17:44:57,449][13107] Updated weights for policy 0, policy_version 1078 (0.0027)
[2024-10-20 17:45:00,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3342.3). Total num frames: 4423680. Throughput: 0: 973.1. Samples: 103420. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:45:00,738][00556] Avg episode reward: [(0, '4.720')]
[2024-10-20 17:45:05,735][00556] Fps is (10 sec: 3275.8, 60 sec: 3686.2, 300 sec: 3339.7). Total num frames: 4440064. Throughput: 0: 919.6. Samples: 107846. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:45:05,743][00556] Avg episode reward: [(0, '4.712')]
[2024-10-20 17:45:09,072][13107] Updated weights for policy 0, policy_version 1088 (0.0018)
[2024-10-20 17:45:10,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3398.2). Total num frames: 4464640. Throughput: 0: 959.4. Samples: 114716. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:45:10,735][00556] Avg episode reward: [(0, '4.698')]
[2024-10-20 17:45:15,732][00556] Fps is (10 sec: 4097.3, 60 sec: 3823.0, 300 sec: 3393.8). Total num frames: 4481024. Throughput: 0: 989.5. Samples: 118110. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:45:15,735][00556] Avg episode reward: [(0, '4.636')]
[2024-10-20 17:45:20,732][00556] Fps is (10 sec: 2867.2, 60 sec: 3686.4, 300 sec: 3361.5). Total num frames: 4493312. Throughput: 0: 936.5. Samples: 122328. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:45:20,734][00556] Avg episode reward: [(0, '4.718')]
[2024-10-20 17:45:20,899][13107] Updated weights for policy 0, policy_version 1098 (0.0021)
[2024-10-20 17:45:25,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3413.3). Total num frames: 4517888. Throughput: 0: 933.8. Samples: 128466. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:45:25,734][00556] Avg episode reward: [(0, '4.790')]
[2024-10-20 17:45:29,847][13107] Updated weights for policy 0, policy_version 1108 (0.0025)
[2024-10-20 17:45:30,733][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3435.4). Total num frames: 4538368. Throughput: 0: 962.1. Samples: 131862. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:45:30,736][00556] Avg episode reward: [(0, '4.628')]
[2024-10-20 17:45:35,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3430.4). Total num frames: 4554752. Throughput: 0: 953.4. Samples: 137100. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:45:35,736][00556] Avg episode reward: [(0, '4.701')]
[2024-10-20 17:45:40,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3425.7). Total num frames: 4571136. Throughput: 0: 922.9. Samples: 142434. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:45:40,739][00556] Avg episode reward: [(0, '4.865')]
[2024-10-20 17:45:41,702][13107] Updated weights for policy 0, policy_version 1118 (0.0027)
[2024-10-20 17:45:45,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3469.6). Total num frames: 4595712. Throughput: 0: 944.1. Samples: 145906. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:45:45,739][00556] Avg episode reward: [(0, '4.650')]
[2024-10-20 17:45:50,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3464.0). Total num frames: 4612096. Throughput: 0: 981.3. Samples: 152002. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:45:50,735][00556] Avg episode reward: [(0, '4.598')]
[2024-10-20 17:45:52,339][13107] Updated weights for policy 0, policy_version 1128 (0.0023)
[2024-10-20 17:45:55,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3458.8). Total num frames: 4628480. Throughput: 0: 923.1. Samples: 156256. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:45:55,736][00556] Avg episode reward: [(0, '4.767')]
[2024-10-20 17:46:00,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3476.1). Total num frames: 4648960. Throughput: 0: 923.0. Samples: 159644. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:46:00,736][00556] Avg episode reward: [(0, '4.646')]
[2024-10-20 17:46:02,548][13107] Updated weights for policy 0, policy_version 1138 (0.0032)
[2024-10-20 17:46:05,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3891.4, 300 sec: 3513.9). Total num frames: 4673536. Throughput: 0: 982.5. Samples: 166542. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:46:05,735][00556] Avg episode reward: [(0, '4.671')]
[2024-10-20 17:46:10,740][00556] Fps is (10 sec: 3683.6, 60 sec: 3685.9, 300 sec: 3486.7). Total num frames: 4685824. Throughput: 0: 940.8. Samples: 170808. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:46:10,744][00556] Avg episode reward: [(0, '4.696')]
[2024-10-20 17:46:14,288][13107] Updated weights for policy 0, policy_version 1148 (0.0036)
[2024-10-20 17:46:15,733][00556] Fps is (10 sec: 3276.4, 60 sec: 3754.6, 300 sec: 3502.1). Total num frames: 4706304. Throughput: 0: 926.4. Samples: 173550. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:46:15,736][00556] Avg episode reward: [(0, '4.726')]
[2024-10-20 17:46:20,732][00556] Fps is (10 sec: 4509.1, 60 sec: 3959.5, 300 sec: 3536.5). Total num frames: 4730880. Throughput: 0: 963.6. Samples: 180462. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:46:20,742][00556] Avg episode reward: [(0, '4.856')]
[2024-10-20 17:46:23,949][13107] Updated weights for policy 0, policy_version 1158 (0.0013)
[2024-10-20 17:46:25,732][00556] Fps is (10 sec: 4096.4, 60 sec: 3822.9, 300 sec: 3530.4). Total num frames: 4747264. Throughput: 0: 962.3. Samples: 185738. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:46:25,735][00556] Avg episode reward: [(0, '4.657')]
[2024-10-20 17:46:30,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3524.5). Total num frames: 4763648. Throughput: 0: 932.1. Samples: 187850. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:46:30,737][00556] Avg episode reward: [(0, '4.798')]
[2024-10-20 17:46:34,895][13107] Updated weights for policy 0, policy_version 1168 (0.0032)
[2024-10-20 17:46:35,732][00556] Fps is (10 sec: 3686.5, 60 sec: 3822.9, 300 sec: 3537.5). Total num frames: 4784128. Throughput: 0: 944.4. Samples: 194498. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:46:35,737][00556] Avg episode reward: [(0, '4.734')]
[2024-10-20 17:46:35,763][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001169_4788224.pth...
[2024-10-20 17:46:35,889][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth
[2024-10-20 17:46:40,734][00556] Fps is (10 sec: 4095.3, 60 sec: 3891.1, 300 sec: 3549.8). Total num frames: 4804608. Throughput: 0: 990.0. Samples: 200808. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:46:40,739][00556] Avg episode reward: [(0, '4.885')]
[2024-10-20 17:46:45,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3543.9). Total num frames: 4820992. Throughput: 0: 959.0. Samples: 202798. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:46:45,735][00556] Avg episode reward: [(0, '4.974')]
[2024-10-20 17:46:46,922][13107] Updated weights for policy 0, policy_version 1178 (0.0020)
[2024-10-20 17:46:50,732][00556] Fps is (10 sec: 3686.9, 60 sec: 3822.9, 300 sec: 3555.7). Total num frames: 4841472. Throughput: 0: 926.3. Samples: 208226. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:46:50,738][00556] Avg episode reward: [(0, '4.893')]
[2024-10-20 17:46:55,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3566.9). Total num frames: 4861952. Throughput: 0: 981.9. Samples: 214988. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:46:55,735][00556] Avg episode reward: [(0, '4.458')]
[2024-10-20 17:46:55,834][13107] Updated weights for policy 0, policy_version 1188 (0.0027)
[2024-10-20 17:47:00,738][00556] Fps is (10 sec: 3684.5, 60 sec: 3822.6, 300 sec: 3560.9). Total num frames: 4878336. Throughput: 0: 976.0. Samples: 217476. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:47:00,749][00556] Avg episode reward: [(0, '4.403')]
[2024-10-20 17:47:05,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3555.3). Total num frames: 4894720. Throughput: 0: 922.5. Samples: 221974. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:47:05,738][00556] Avg episode reward: [(0, '4.568')]
[2024-10-20 17:47:07,619][13107] Updated weights for policy 0, policy_version 1198 (0.0021)
[2024-10-20 17:47:10,732][00556] Fps is (10 sec: 4098.3, 60 sec: 3891.7, 300 sec: 3582.0). Total num frames: 4919296. Throughput: 0: 958.2. Samples: 228856. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:47:10,735][00556] Avg episode reward: [(0, '4.674')]
[2024-10-20 17:47:15,732][00556] Fps is (10 sec: 4095.9, 60 sec: 3823.0, 300 sec: 3576.1). Total num frames: 4935680. Throughput: 0: 986.0. Samples: 232220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:47:15,739][00556] Avg episode reward: [(0, '4.703')]
[2024-10-20 17:47:18,853][13107] Updated weights for policy 0, policy_version 1208 (0.0025)
[2024-10-20 17:47:20,732][00556] Fps is (10 sec: 3276.7, 60 sec: 3686.4, 300 sec: 3570.5). Total num frames: 4952064. Throughput: 0: 931.6. Samples: 236418. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:47:20,735][00556] Avg episode reward: [(0, '4.860')]
[2024-10-20 17:47:25,732][00556] Fps is (10 sec: 3686.5, 60 sec: 3754.7, 300 sec: 3580.2). Total num frames: 4972544. Throughput: 0: 930.3. Samples: 242668. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:47:25,735][00556] Avg episode reward: [(0, '4.959')]
[2024-10-20 17:47:28,508][13107] Updated weights for policy 0, policy_version 1218 (0.0035)
[2024-10-20 17:47:30,732][00556] Fps is (10 sec: 4505.7, 60 sec: 3891.2, 300 sec: 3604.5). Total num frames: 4997120. Throughput: 0: 963.4. Samples: 246152. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:47:30,735][00556] Avg episode reward: [(0, '4.739')]
[2024-10-20 17:47:35,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3584.0). Total num frames: 5009408. Throughput: 0: 956.1. Samples: 251250. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:47:35,735][00556] Avg episode reward: [(0, '4.733')]
[2024-10-20 17:47:39,986][13107] Updated weights for policy 0, policy_version 1228 (0.0021)
[2024-10-20 17:47:40,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.8, 300 sec: 3593.0). Total num frames: 5029888. Throughput: 0: 929.8. Samples: 256830. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:47:40,734][00556] Avg episode reward: [(0, '4.928')]
[2024-10-20 17:47:45,732][00556] Fps is (10 sec: 4505.5, 60 sec: 3891.2, 300 sec: 3615.8). Total num frames: 5054464. Throughput: 0: 952.8. Samples: 260348. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:47:45,735][00556] Avg episode reward: [(0, '4.942')]
[2024-10-20 17:47:49,781][13107] Updated weights for policy 0, policy_version 1238 (0.0016)
[2024-10-20 17:47:50,734][00556] Fps is (10 sec: 4095.4, 60 sec: 3822.9, 300 sec: 3610.0). Total num frames: 5070848. Throughput: 0: 991.1. Samples: 266574. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:47:50,736][00556] Avg episode reward: [(0, '4.986')]
[2024-10-20 17:47:55,732][00556] Fps is (10 sec: 3276.9, 60 sec: 3754.7, 300 sec: 3665.6). Total num frames: 5087232. Throughput: 0: 936.4. Samples: 270996. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:47:55,735][00556] Avg episode reward: [(0, '4.664')]
[2024-10-20 17:48:00,480][13107] Updated weights for policy 0, policy_version 1248 (0.0018)
[2024-10-20 17:48:00,732][00556] Fps is (10 sec: 4096.6, 60 sec: 3891.6, 300 sec: 3748.9). Total num frames: 5111808. Throughput: 0: 939.4. Samples: 274492. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:48:00,735][00556] Avg episode reward: [(0, '4.776')]
[2024-10-20 17:48:05,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3804.4). Total num frames: 5132288. Throughput: 0: 1007.4. Samples: 281752. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:48:05,741][00556] Avg episode reward: [(0, '5.045')]
[2024-10-20 17:48:10,740][00556] Fps is (10 sec: 3683.3, 60 sec: 3822.4, 300 sec: 3790.4). Total num frames: 5148672. Throughput: 0: 970.0. Samples: 286328. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-10-20 17:48:10,743][00556] Avg episode reward: [(0, '4.957')]
[2024-10-20 17:48:11,795][13107] Updated weights for policy 0, policy_version 1258 (0.0038)
[2024-10-20 17:48:15,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3818.3). Total num frames: 5169152. Throughput: 0: 960.3. Samples: 289364. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:48:15,735][00556] Avg episode reward: [(0, '5.179')]
[2024-10-20 17:48:20,164][13107] Updated weights for policy 0, policy_version 1268 (0.0036)
[2024-10-20 17:48:20,732][00556] Fps is (10 sec: 4509.4, 60 sec: 4027.8, 300 sec: 3832.2). Total num frames: 5193728. Throughput: 0: 1008.7. Samples: 296640. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:48:20,737][00556] Avg episode reward: [(0, '4.946')]
[2024-10-20 17:48:25,734][00556] Fps is (10 sec: 4095.2, 60 sec: 3959.3, 300 sec: 3804.4). Total num frames: 5210112. Throughput: 0: 1002.7. Samples: 301954. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:48:25,738][00556] Avg episode reward: [(0, '4.618')]
[2024-10-20 17:48:30,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3832.2). Total num frames: 5230592. Throughput: 0: 972.6. Samples: 304114. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:48:30,734][00556] Avg episode reward: [(0, '4.662')]
[2024-10-20 17:48:31,541][13107] Updated weights for policy 0, policy_version 1278 (0.0025)
[2024-10-20 17:48:35,732][00556] Fps is (10 sec: 4096.8, 60 sec: 4027.7, 300 sec: 3832.2). Total num frames: 5251072. Throughput: 0: 985.9. Samples: 310940. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:48:35,736][00556] Avg episode reward: [(0, '4.775')]
[2024-10-20 17:48:35,746][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001282_5251072.pth...
[2024-10-20 17:48:35,875][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001057_4329472.pth
[2024-10-20 17:48:40,733][00556] Fps is (10 sec: 4095.5, 60 sec: 4027.6, 300 sec: 3832.2). Total num frames: 5271552. Throughput: 0: 1030.5. Samples: 317370. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:48:40,736][00556] Avg episode reward: [(0, '4.752')]
[2024-10-20 17:48:41,090][13107] Updated weights for policy 0, policy_version 1288 (0.0025)
[2024-10-20 17:48:45,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3832.2). Total num frames: 5287936. Throughput: 0: 999.7. Samples: 319480. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:48:45,735][00556] Avg episode reward: [(0, '4.800')]
[2024-10-20 17:48:50,732][00556] Fps is (10 sec: 3686.9, 60 sec: 3959.6, 300 sec: 3846.1). Total num frames: 5308416. Throughput: 0: 969.8. Samples: 325392. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:48:50,734][00556] Avg episode reward: [(0, '5.022')]
[2024-10-20 17:48:51,864][13107] Updated weights for policy 0, policy_version 1298 (0.0022)
[2024-10-20 17:48:55,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4096.0, 300 sec: 3860.0). Total num frames: 5332992. Throughput: 0: 1024.9. Samples: 332440. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:48:55,735][00556] Avg episode reward: [(0, '4.784')]
[2024-10-20 17:49:00,733][00556] Fps is (10 sec: 4095.5, 60 sec: 3959.4, 300 sec: 3832.2). Total num frames: 5349376. Throughput: 0: 1008.9. Samples: 334768. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:49:00,739][00556] Avg episode reward: [(0, '4.588')]
[2024-10-20 17:49:03,274][13107] Updated weights for policy 0, policy_version 1308 (0.0053)
[2024-10-20 17:49:05,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3846.1). Total num frames: 5365760. Throughput: 0: 959.0. Samples: 339796. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:49:05,734][00556] Avg episode reward: [(0, '4.803')]
[2024-10-20 17:49:10,732][00556] Fps is (10 sec: 4096.5, 60 sec: 4028.3, 300 sec: 3860.0). Total num frames: 5390336. Throughput: 0: 997.6. Samples: 346846. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:49:10,738][00556] Avg episode reward: [(0, '4.814')]
[2024-10-20 17:49:11,859][13107] Updated weights for policy 0, policy_version 1318 (0.0016)
[2024-10-20 17:49:15,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3860.0). Total num frames: 5410816. Throughput: 0: 1024.0. Samples: 350194. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:49:15,736][00556] Avg episode reward: [(0, '4.620')]
[2024-10-20 17:49:20,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 5427200. Throughput: 0: 968.3. Samples: 354512. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:49:20,738][00556] Avg episode reward: [(0, '4.624')]
[2024-10-20 17:49:23,191][13107] Updated weights for policy 0, policy_version 1328 (0.0024)
[2024-10-20 17:49:25,732][00556] Fps is (10 sec: 3686.3, 60 sec: 3959.6, 300 sec: 3873.8). Total num frames: 5447680. Throughput: 0: 974.1. Samples: 361204. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:49:25,737][00556] Avg episode reward: [(0, '4.872')]
[2024-10-20 17:49:30,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3860.0). Total num frames: 5468160. Throughput: 0: 1006.0. Samples: 364748. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:49:30,734][00556] Avg episode reward: [(0, '4.775')]
[2024-10-20 17:49:33,580][13107] Updated weights for policy 0, policy_version 1338 (0.0028)
[2024-10-20 17:49:35,732][00556] Fps is (10 sec: 3686.5, 60 sec: 3891.2, 300 sec: 3846.1). Total num frames: 5484544. Throughput: 0: 985.7. Samples: 369750. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:49:35,735][00556] Avg episode reward: [(0, '4.776')]
[2024-10-20 17:49:40,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.3, 300 sec: 3873.8). Total num frames: 5505024. Throughput: 0: 961.6. Samples: 375712. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:49:40,737][00556] Avg episode reward: [(0, '5.088')]
[2024-10-20 17:49:43,592][13107] Updated weights for policy 0, policy_version 1348 (0.0027)
[2024-10-20 17:49:45,732][00556] Fps is (10 sec: 4505.5, 60 sec: 4027.7, 300 sec: 3873.8). Total num frames: 5529600. Throughput: 0: 987.1. Samples: 379188. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:49:45,734][00556] Avg episode reward: [(0, '5.245')]
[2024-10-20 17:49:50,733][00556] Fps is (10 sec: 4095.6, 60 sec: 3959.4, 300 sec: 3860.0). Total num frames: 5545984. Throughput: 0: 1010.1. Samples: 385250. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:49:50,739][00556] Avg episode reward: [(0, '5.274')]
[2024-10-20 17:49:54,744][13107] Updated weights for policy 0, policy_version 1358 (0.0030)
[2024-10-20 17:49:55,733][00556] Fps is (10 sec: 3276.7, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 5562368. Throughput: 0: 962.5. Samples: 390160. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:49:55,737][00556] Avg episode reward: [(0, '5.287')]
[2024-10-20 17:50:00,732][00556] Fps is (10 sec: 4096.4, 60 sec: 3959.6, 300 sec: 3887.8). Total num frames: 5586944. Throughput: 0: 968.8. Samples: 393792. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:50:00,737][00556] Avg episode reward: [(0, '5.399')]
[2024-10-20 17:50:03,384][13107] Updated weights for policy 0, policy_version 1368 (0.0027)
[2024-10-20 17:50:05,732][00556] Fps is (10 sec: 4505.8, 60 sec: 4027.7, 300 sec: 3873.8). Total num frames: 5607424. Throughput: 0: 1029.7. Samples: 400850. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:50:05,735][00556] Avg episode reward: [(0, '5.498')]
[2024-10-20 17:50:05,742][13094] Saving new best policy, reward=5.498!
[2024-10-20 17:50:10,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 5623808. Throughput: 0: 973.8. Samples: 405024. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:10,736][00556] Avg episode reward: [(0, '5.584')]
[2024-10-20 17:50:10,741][13094] Saving new best policy, reward=5.584!
[2024-10-20 17:50:15,055][13107] Updated weights for policy 0, policy_version 1378 (0.0025)
[2024-10-20 17:50:15,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 5644288. Throughput: 0: 965.0. Samples: 408172. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:15,736][00556] Avg episode reward: [(0, '5.867')]
[2024-10-20 17:50:15,746][13094] Saving new best policy, reward=5.867!
[2024-10-20 17:50:20,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3901.6). Total num frames: 5668864. Throughput: 0: 1009.1. Samples: 415160. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:20,739][00556] Avg episode reward: [(0, '6.243')]
[2024-10-20 17:50:20,741][13094] Saving new best policy, reward=6.243!
[2024-10-20 17:50:25,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 5681152. Throughput: 0: 985.4. Samples: 420054. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:25,735][00556] Avg episode reward: [(0, '6.490')]
[2024-10-20 17:50:25,746][13094] Saving new best policy, reward=6.490!
[2024-10-20 17:50:26,103][13107] Updated weights for policy 0, policy_version 1388 (0.0044)
[2024-10-20 17:50:30,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 5701632. Throughput: 0: 952.6. Samples: 422056. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:30,735][00556] Avg episode reward: [(0, '6.226')]
[2024-10-20 17:50:35,566][13107] Updated weights for policy 0, policy_version 1398 (0.0033)
[2024-10-20 17:50:35,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3915.5). Total num frames: 5726208. Throughput: 0: 973.4. Samples: 429050. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:35,736][00556] Avg episode reward: [(0, '6.557')]
[2024-10-20 17:50:35,747][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001398_5726208.pth...
[2024-10-20 17:50:35,871][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001169_4788224.pth
[2024-10-20 17:50:35,892][13094] Saving new best policy, reward=6.557!
[2024-10-20 17:50:40,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 5742592. Throughput: 0: 995.5. Samples: 434958. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:40,735][00556] Avg episode reward: [(0, '6.296')]
[2024-10-20 17:50:45,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3823.0, 300 sec: 3887.7). Total num frames: 5758976. Throughput: 0: 960.9. Samples: 437034. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:50:45,735][00556] Avg episode reward: [(0, '6.602')]
[2024-10-20 17:50:45,745][13094] Saving new best policy, reward=6.602!
[2024-10-20 17:50:47,598][13107] Updated weights for policy 0, policy_version 1408 (0.0021)
[2024-10-20 17:50:50,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.3, 300 sec: 3901.6). Total num frames: 5779456. Throughput: 0: 937.5. Samples: 443036. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:50:50,734][00556] Avg episode reward: [(0, '6.584')]
[2024-10-20 17:50:55,734][00556] Fps is (10 sec: 4504.9, 60 sec: 4027.7, 300 sec: 3915.5). Total num frames: 5804032. Throughput: 0: 998.8. Samples: 449972. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:50:55,737][00556] Avg episode reward: [(0, '6.490')]
[2024-10-20 17:50:56,998][13107] Updated weights for policy 0, policy_version 1418 (0.0025)
[2024-10-20 17:51:00,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 5816320. Throughput: 0: 974.4. Samples: 452022. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:51:00,743][00556] Avg episode reward: [(0, '6.575')]
[2024-10-20 17:51:05,732][00556] Fps is (10 sec: 3277.2, 60 sec: 3822.9, 300 sec: 3901.7). Total num frames: 5836800. Throughput: 0: 930.6. Samples: 457038. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:51:05,735][00556] Avg episode reward: [(0, '6.107')]
[2024-10-20 17:51:08,026][13107] Updated weights for policy 0, policy_version 1428 (0.0030)
[2024-10-20 17:51:10,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5861376. Throughput: 0: 977.5. Samples: 464040. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:51:10,735][00556] Avg episode reward: [(0, '5.802')]
[2024-10-20 17:51:15,732][00556] Fps is (10 sec: 4096.1, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 5877760. Throughput: 0: 1003.8. Samples: 467228. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:51:15,737][00556] Avg episode reward: [(0, '5.971')]
[2024-10-20 17:51:19,422][13107] Updated weights for policy 0, policy_version 1438 (0.0018)
[2024-10-20 17:51:20,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3887.7). Total num frames: 5894144. Throughput: 0: 942.0. Samples: 471438. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:51:20,735][00556] Avg episode reward: [(0, '6.567')]
[2024-10-20 17:51:25,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 5914624. Throughput: 0: 961.2. Samples: 478214. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:51:25,735][00556] Avg episode reward: [(0, '6.978')]
[2024-10-20 17:51:25,744][13094] Saving new best policy, reward=6.978!
[2024-10-20 17:51:28,766][13107] Updated weights for policy 0, policy_version 1448 (0.0013)
[2024-10-20 17:51:30,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 5935104. Throughput: 0: 986.1. Samples: 481408. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:51:30,740][00556] Avg episode reward: [(0, '7.457')]
[2024-10-20 17:51:30,745][13094] Saving new best policy, reward=7.457!
[2024-10-20 17:51:35,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3754.7, 300 sec: 3887.8). Total num frames: 5951488. Throughput: 0: 959.6. Samples: 486220. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:51:35,737][00556] Avg episode reward: [(0, '7.749')]
[2024-10-20 17:51:35,744][13094] Saving new best policy, reward=7.749!
[2024-10-20 17:51:40,097][13107] Updated weights for policy 0, policy_version 1458 (0.0026)
[2024-10-20 17:51:40,733][00556] Fps is (10 sec: 3686.2, 60 sec: 3822.9, 300 sec: 3901.6). Total num frames: 5971968. Throughput: 0: 939.0. Samples: 492224. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:51:40,738][00556] Avg episode reward: [(0, '7.325')]
[2024-10-20 17:51:45,732][00556] Fps is (10 sec: 4505.7, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 5996544. Throughput: 0: 973.1. Samples: 495810. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:51:45,739][00556] Avg episode reward: [(0, '6.764')]
[2024-10-20 17:51:50,434][13107] Updated weights for policy 0, policy_version 1468 (0.0015)
[2024-10-20 17:51:50,732][00556] Fps is (10 sec: 4096.2, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 6012928. Throughput: 0: 990.3. Samples: 501600. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:51:50,736][00556] Avg episode reward: [(0, '7.142')]
[2024-10-20 17:51:55,734][00556] Fps is (10 sec: 3276.1, 60 sec: 3754.6, 300 sec: 3901.7). Total num frames: 6029312. Throughput: 0: 944.0. Samples: 506520. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:51:55,740][00556] Avg episode reward: [(0, '7.097')]
[2024-10-20 17:52:00,570][13107] Updated weights for policy 0, policy_version 1478 (0.0019)
[2024-10-20 17:52:00,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3929.4). Total num frames: 6053888. Throughput: 0: 947.4. Samples: 509860. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:52:00,735][00556] Avg episode reward: [(0, '7.629')]
[2024-10-20 17:52:05,732][00556] Fps is (10 sec: 4096.8, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 6070272. Throughput: 0: 1003.6. Samples: 516600. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:52:05,736][00556] Avg episode reward: [(0, '8.297')]
[2024-10-20 17:52:05,750][13094] Saving new best policy, reward=8.297!
[2024-10-20 17:52:10,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3901.6). Total num frames: 6086656. Throughput: 0: 945.0. Samples: 520738. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:52:10,738][00556] Avg episode reward: [(0, '8.526')]
[2024-10-20 17:52:10,743][13094] Saving new best policy, reward=8.526!
[2024-10-20 17:52:12,390][13107] Updated weights for policy 0, policy_version 1488 (0.0021)
[2024-10-20 17:52:15,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3915.5). Total num frames: 6107136. Throughput: 0: 945.6. Samples: 523962. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:52:15,741][00556] Avg episode reward: [(0, '8.491')]
[2024-10-20 17:52:20,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3929.4). Total num frames: 6131712. Throughput: 0: 995.4. Samples: 531014. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:52:20,740][00556] Avg episode reward: [(0, '8.152')]
[2024-10-20 17:52:21,240][13107] Updated weights for policy 0, policy_version 1498 (0.0029)
[2024-10-20 17:52:25,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 6148096. Throughput: 0: 970.7. Samples: 535904. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:52:25,737][00556] Avg episode reward: [(0, '8.798')]
[2024-10-20 17:52:25,751][13094] Saving new best policy, reward=8.798!
[2024-10-20 17:52:30,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3915.5). Total num frames: 6164480. Throughput: 0: 939.6. Samples: 538094. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:52:30,740][00556] Avg episode reward: [(0, '8.482')]
[2024-10-20 17:52:32,719][13107] Updated weights for policy 0, policy_version 1508 (0.0032)
[2024-10-20 17:52:35,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3929.4). Total num frames: 6189056. Throughput: 0: 968.9. Samples: 545202. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:52:35,735][00556] Avg episode reward: [(0, '9.598')]
[2024-10-20 17:52:35,746][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001511_6189056.pth...
[2024-10-20 17:52:35,868][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001282_5251072.pth
[2024-10-20 17:52:35,885][13094] Saving new best policy, reward=9.598!
[2024-10-20 17:52:40,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 6205440. Throughput: 0: 987.4. Samples: 550952. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:52:40,735][00556] Avg episode reward: [(0, '9.612')]
[2024-10-20 17:52:40,741][13094] Saving new best policy, reward=9.612!
[2024-10-20 17:52:44,111][13107] Updated weights for policy 0, policy_version 1518 (0.0016)
[2024-10-20 17:52:45,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3901.6). Total num frames: 6221824. Throughput: 0: 957.3. Samples: 552938. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:52:45,737][00556] Avg episode reward: [(0, '10.551')]
[2024-10-20 17:52:45,745][13094] Saving new best policy, reward=10.551!
[2024-10-20 17:52:50,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3929.4). Total num frames: 6246400. Throughput: 0: 944.1. Samples: 559084. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:52:50,734][00556] Avg episode reward: [(0, '10.450')]
[2024-10-20 17:52:53,445][13107] Updated weights for policy 0, policy_version 1528 (0.0016)
[2024-10-20 17:52:55,733][00556] Fps is (10 sec: 4505.4, 60 sec: 3959.6, 300 sec: 3915.5). Total num frames: 6266880. Throughput: 0: 1005.5. Samples: 565988. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:52:55,738][00556] Avg episode reward: [(0, '9.111')]
[2024-10-20 17:53:00,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3887.7). Total num frames: 6279168. Throughput: 0: 978.0. Samples: 567972. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:53:00,736][00556] Avg episode reward: [(0, '8.549')]
[2024-10-20 17:53:05,162][13107] Updated weights for policy 0, policy_version 1538 (0.0024)
[2024-10-20 17:53:05,732][00556] Fps is (10 sec: 3276.9, 60 sec: 3822.9, 300 sec: 3901.7). Total num frames: 6299648. Throughput: 0: 935.6. Samples: 573114. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:53:05,737][00556] Avg episode reward: [(0, '9.168')]
[2024-10-20 17:53:10,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 6324224. Throughput: 0: 984.1. Samples: 580190. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:53:10,740][00556] Avg episode reward: [(0, '9.790')]
[2024-10-20 17:53:14,574][13107] Updated weights for policy 0, policy_version 1548 (0.0021)
[2024-10-20 17:53:15,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 6340608. Throughput: 0: 1005.1. Samples: 583322. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:53:15,735][00556] Avg episode reward: [(0, '10.452')]
[2024-10-20 17:53:20,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3887.8). Total num frames: 6356992. Throughput: 0: 942.8. Samples: 587628. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:53:20,740][00556] Avg episode reward: [(0, '11.112')]
[2024-10-20 17:53:20,742][13094] Saving new best policy, reward=11.112!
[2024-10-20 17:53:25,139][13107] Updated weights for policy 0, policy_version 1558 (0.0041)
[2024-10-20 17:53:25,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 6381568. Throughput: 0: 971.9. Samples: 594686. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:53:25,734][00556] Avg episode reward: [(0, '11.859')]
[2024-10-20 17:53:25,757][13094] Saving new best policy, reward=11.859!
[2024-10-20 17:53:30,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 6402048. Throughput: 0: 999.8. Samples: 597928. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:53:30,740][00556] Avg episode reward: [(0, '11.930')]
[2024-10-20 17:53:30,743][13094] Saving new best policy, reward=11.930!
[2024-10-20 17:53:35,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3873.9). Total num frames: 6414336. Throughput: 0: 966.6. Samples: 602582. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:53:35,738][00556] Avg episode reward: [(0, '10.570')]
[2024-10-20 17:53:37,140][13107] Updated weights for policy 0, policy_version 1568 (0.0035)
[2024-10-20 17:53:40,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 6438912. Throughput: 0: 945.2. Samples: 608520. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:53:40,742][00556] Avg episode reward: [(0, '10.837')]
[2024-10-20 17:53:45,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 6459392. Throughput: 0: 977.3. Samples: 611952. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:53:45,740][00556] Avg episode reward: [(0, '11.957')]
[2024-10-20 17:53:45,751][13094] Saving new best policy, reward=11.957!
[2024-10-20 17:53:45,988][13107] Updated weights for policy 0, policy_version 1578 (0.0023)
[2024-10-20 17:53:50,734][00556] Fps is (10 sec: 3685.5, 60 sec: 3822.8, 300 sec: 3873.8). Total num frames: 6475776. Throughput: 0: 992.8. Samples: 617792. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:53:50,743][00556] Avg episode reward: [(0, '12.707')]
[2024-10-20 17:53:50,745][13094] Saving new best policy, reward=12.707!
[2024-10-20 17:53:55,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3873.9). Total num frames: 6492160. Throughput: 0: 940.9. Samples: 622530. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:53:55,734][00556] Avg episode reward: [(0, '13.675')]
[2024-10-20 17:53:55,755][13094] Saving new best policy, reward=13.675!
[2024-10-20 17:53:57,683][13107] Updated weights for policy 0, policy_version 1588 (0.0013)
[2024-10-20 17:54:00,735][00556] Fps is (10 sec: 4095.6, 60 sec: 3959.2, 300 sec: 3901.6). Total num frames: 6516736. Throughput: 0: 945.4. Samples: 625866. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:54:00,737][00556] Avg episode reward: [(0, '13.761')]
[2024-10-20 17:54:00,741][13094] Saving new best policy, reward=13.761!
[2024-10-20 17:54:05,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 6537216. Throughput: 0: 997.6. Samples: 632522. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:54:05,738][00556] Avg episode reward: [(0, '13.863')]
[2024-10-20 17:54:05,756][13094] Saving new best policy, reward=13.863!
[2024-10-20 17:54:08,541][13107] Updated weights for policy 0, policy_version 1598 (0.0036)
[2024-10-20 17:54:10,732][00556] Fps is (10 sec: 3277.8, 60 sec: 3754.6, 300 sec: 3860.0). Total num frames: 6549504. Throughput: 0: 932.1. Samples: 636632. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:54:10,735][00556] Avg episode reward: [(0, '14.218')]
[2024-10-20 17:54:10,737][13094] Saving new best policy, reward=14.218!
[2024-10-20 17:54:15,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 6569984. Throughput: 0: 930.4. Samples: 639794. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:54:15,734][00556] Avg episode reward: [(0, '14.220')]
[2024-10-20 17:54:15,747][13094] Saving new best policy, reward=14.220!
[2024-10-20 17:54:18,422][13107] Updated weights for policy 0, policy_version 1608 (0.0026)
[2024-10-20 17:54:20,732][00556] Fps is (10 sec: 4505.7, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 6594560. Throughput: 0: 982.0. Samples: 646774. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:54:20,734][00556] Avg episode reward: [(0, '14.512')]
[2024-10-20 17:54:20,739][13094] Saving new best policy, reward=14.512!
[2024-10-20 17:54:25,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 6610944. Throughput: 0: 959.8. Samples: 651712. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:54:25,739][00556] Avg episode reward: [(0, '14.462')]
[2024-10-20 17:54:30,013][13107] Updated weights for policy 0, policy_version 1618 (0.0028)
[2024-10-20 17:54:30,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3873.8). Total num frames: 6627328. Throughput: 0: 932.1. Samples: 653896. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:54:30,736][00556] Avg episode reward: [(0, '15.060')]
[2024-10-20 17:54:30,740][13094] Saving new best policy, reward=15.060!
[2024-10-20 17:54:35,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 6651904. Throughput: 0: 958.6. Samples: 660928. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:54:35,738][00556] Avg episode reward: [(0, '14.106')]
[2024-10-20 17:54:35,750][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001624_6651904.pth...
[2024-10-20 17:54:35,903][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001398_5726208.pth
[2024-10-20 17:54:39,475][13107] Updated weights for policy 0, policy_version 1628 (0.0018)
[2024-10-20 17:54:40,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 6668288. Throughput: 0: 980.0. Samples: 666632. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:54:40,735][00556] Avg episode reward: [(0, '14.228')]
[2024-10-20 17:54:45,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3860.0). Total num frames: 6684672. Throughput: 0: 950.9. Samples: 668652. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:54:45,734][00556] Avg episode reward: [(0, '13.322')]
[2024-10-20 17:54:50,415][13107] Updated weights for policy 0, policy_version 1638 (0.0023)
[2024-10-20 17:54:50,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.4, 300 sec: 3887.7). Total num frames: 6709248. Throughput: 0: 948.8. Samples: 675220. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:54:50,740][00556] Avg episode reward: [(0, '13.764')]
[2024-10-20 17:54:55,738][00556] Fps is (10 sec: 4503.0, 60 sec: 3959.1, 300 sec: 3873.8). Total num frames: 6729728. Throughput: 0: 1006.0. Samples: 681908. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:54:55,745][00556] Avg episode reward: [(0, '13.888')]
[2024-10-20 17:55:00,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3823.2, 300 sec: 3860.0). Total num frames: 6746112. Throughput: 0: 982.0. Samples: 683982. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:55:00,737][00556] Avg episode reward: [(0, '13.959')]
[2024-10-20 17:55:01,903][13107] Updated weights for policy 0, policy_version 1648 (0.0035)
[2024-10-20 17:55:05,732][00556] Fps is (10 sec: 3688.5, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 6766592. Throughput: 0: 949.7. Samples: 689510. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:55:05,735][00556] Avg episode reward: [(0, '15.279')]
[2024-10-20 17:55:05,745][13094] Saving new best policy, reward=15.279!
[2024-10-20 17:55:10,588][13107] Updated weights for policy 0, policy_version 1658 (0.0026)
[2024-10-20 17:55:10,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.8, 300 sec: 3887.7). Total num frames: 6791168. Throughput: 0: 996.8. Samples: 696568. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:55:10,737][00556] Avg episode reward: [(0, '15.888')]
[2024-10-20 17:55:10,741][13094] Saving new best policy, reward=15.888!
[2024-10-20 17:55:15,732][00556] Fps is (10 sec: 4095.9, 60 sec: 3959.4, 300 sec: 3860.0). Total num frames: 6807552. Throughput: 0: 1008.4. Samples: 699274. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:55:15,737][00556] Avg episode reward: [(0, '16.846')]
[2024-10-20 17:55:15,747][13094] Saving new best policy, reward=16.846!
[2024-10-20 17:55:20,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 6823936. Throughput: 0: 947.6. Samples: 703570. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:55:20,735][00556] Avg episode reward: [(0, '17.097')]
[2024-10-20 17:55:20,739][13094] Saving new best policy, reward=17.097!
[2024-10-20 17:55:22,349][13107] Updated weights for policy 0, policy_version 1668 (0.0036)
[2024-10-20 17:55:25,732][00556] Fps is (10 sec: 3686.5, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 6844416. Throughput: 0: 977.3. Samples: 710610. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:55:25,742][00556] Avg episode reward: [(0, '17.080')]
[2024-10-20 17:55:30,733][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3860.0). Total num frames: 6864896. Throughput: 0: 1010.6. Samples: 714128. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:55:30,739][00556] Avg episode reward: [(0, '18.704')]
[2024-10-20 17:55:30,741][13094] Saving new best policy, reward=18.704!
[2024-10-20 17:55:32,953][13107] Updated weights for policy 0, policy_version 1678 (0.0026)
[2024-10-20 17:55:35,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3846.1). Total num frames: 6877184. Throughput: 0: 959.3. Samples: 718390. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:55:35,735][00556] Avg episode reward: [(0, '18.853')]
[2024-10-20 17:55:35,748][13094] Saving new best policy, reward=18.853!
[2024-10-20 17:55:40,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 6901760. Throughput: 0: 949.7. Samples: 724638. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:55:40,734][00556] Avg episode reward: [(0, '19.383')]
[2024-10-20 17:55:40,741][13094] Saving new best policy, reward=19.383!
[2024-10-20 17:55:43,097][13107] Updated weights for policy 0, policy_version 1688 (0.0018)
[2024-10-20 17:55:45,732][00556] Fps is (10 sec: 4915.1, 60 sec: 4027.7, 300 sec: 3887.7). Total num frames: 6926336. Throughput: 0: 977.9. Samples: 727986. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:55:45,738][00556] Avg episode reward: [(0, '19.203')]
[2024-10-20 17:55:50,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3846.1). Total num frames: 6938624. Throughput: 0: 976.5. Samples: 733454. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:55:50,738][00556] Avg episode reward: [(0, '18.951')]
[2024-10-20 17:55:54,498][13107] Updated weights for policy 0, policy_version 1698 (0.0033)
[2024-10-20 17:55:55,732][00556] Fps is (10 sec: 3276.9, 60 sec: 3823.3, 300 sec: 3873.8). Total num frames: 6959104. Throughput: 0: 937.4. Samples: 738750. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:55:55,738][00556] Avg episode reward: [(0, '17.945')]
[2024-10-20 17:56:00,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 6983680. Throughput: 0: 955.2. Samples: 742256. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:56:00,735][00556] Avg episode reward: [(0, '17.158')]
[2024-10-20 17:56:03,638][13107] Updated weights for policy 0, policy_version 1708 (0.0025)
[2024-10-20 17:56:05,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 7000064. Throughput: 0: 997.9. Samples: 748474. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2024-10-20 17:56:05,735][00556] Avg episode reward: [(0, '15.689')]
[2024-10-20 17:56:10,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3860.0). Total num frames: 7016448. Throughput: 0: 940.0. Samples: 752908. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2024-10-20 17:56:10,736][00556] Avg episode reward: [(0, '16.469')]
[2024-10-20 17:56:15,045][13107] Updated weights for policy 0, policy_version 1718 (0.0025)
[2024-10-20 17:56:15,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 7036928. Throughput: 0: 938.5. Samples: 756362. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:56:15,738][00556] Avg episode reward: [(0, '16.657')]
[2024-10-20 17:56:20,732][00556] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 7061504. Throughput: 0: 1001.6. Samples: 763460. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:56:20,744][00556] Avg episode reward: [(0, '16.841')]
[2024-10-20 17:56:25,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 7073792. Throughput: 0: 962.0. Samples: 767928. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:56:25,738][00556] Avg episode reward: [(0, '17.006')]
[2024-10-20 17:56:26,322][13107] Updated weights for policy 0, policy_version 1728 (0.0025)
[2024-10-20 17:56:30,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 7094272. Throughput: 0: 950.5. Samples: 770758. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:56:30,734][00556] Avg episode reward: [(0, '17.406')]
[2024-10-20 17:56:35,323][13107] Updated weights for policy 0, policy_version 1738 (0.0018)
[2024-10-20 17:56:35,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3887.7). Total num frames: 7118848. Throughput: 0: 983.1. Samples: 777694. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:56:35,735][00556] Avg episode reward: [(0, '18.076')]
[2024-10-20 17:56:35,747][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001738_7118848.pth...
[2024-10-20 17:56:35,904][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001511_6189056.pth
[2024-10-20 17:56:40,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 7135232. Throughput: 0: 983.0. Samples: 782986. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:56:40,734][00556] Avg episode reward: [(0, '18.765')]
[2024-10-20 17:56:45,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3860.0). Total num frames: 7151616. Throughput: 0: 953.2. Samples: 785150. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:56:45,741][00556] Avg episode reward: [(0, '18.470')]
[2024-10-20 17:56:46,893][13107] Updated weights for policy 0, policy_version 1748 (0.0041)
[2024-10-20 17:56:50,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3887.8). Total num frames: 7176192. Throughput: 0: 969.6. Samples: 792106. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:56:50,734][00556] Avg episode reward: [(0, '18.238')]
[2024-10-20 17:56:55,732][00556] Fps is (10 sec: 4505.7, 60 sec: 3959.5, 300 sec: 3873.8). Total num frames: 7196672. Throughput: 0: 1013.0. Samples: 798494. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:56:55,736][00556] Avg episode reward: [(0, '17.947')]
[2024-10-20 17:56:56,476][13107] Updated weights for policy 0, policy_version 1758 (0.0029)
[2024-10-20 17:57:00,735][00556] Fps is (10 sec: 3276.0, 60 sec: 3754.5, 300 sec: 3859.9). Total num frames: 7208960. Throughput: 0: 982.5. Samples: 800576. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:57:00,741][00556] Avg episode reward: [(0, '17.435')]
[2024-10-20 17:57:05,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 7233536. Throughput: 0: 953.6. Samples: 806374. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:57:05,735][00556] Avg episode reward: [(0, '16.878')]
[2024-10-20 17:57:07,120][13107] Updated weights for policy 0, policy_version 1768 (0.0029)
[2024-10-20 17:57:10,732][00556] Fps is (10 sec: 4916.4, 60 sec: 4027.7, 300 sec: 3901.6). Total num frames: 7258112. Throughput: 0: 1013.1. Samples: 813516. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:57:10,735][00556] Avg episode reward: [(0, '16.118')]
[2024-10-20 17:57:15,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 7270400. Throughput: 0: 1005.9. Samples: 816024. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:57:15,734][00556] Avg episode reward: [(0, '16.678')]
[2024-10-20 17:57:18,428][13107] Updated weights for policy 0, policy_version 1778 (0.0031)
[2024-10-20 17:57:20,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 7290880. Throughput: 0: 958.8. Samples: 820838. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2024-10-20 17:57:20,734][00556] Avg episode reward: [(0, '16.217')]
[2024-10-20 17:57:25,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3901.6). Total num frames: 7315456. Throughput: 0: 1001.6. Samples: 828056. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:57:25,735][00556] Avg episode reward: [(0, '17.508')]
[2024-10-20 17:57:27,042][13107] Updated weights for policy 0, policy_version 1788 (0.0016)
[2024-10-20 17:57:30,732][00556] Fps is (10 sec: 4505.4, 60 sec: 4027.7, 300 sec: 3887.7). Total num frames: 7335936. Throughput: 0: 1028.8. Samples: 831446. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:57:30,735][00556] Avg episode reward: [(0, '18.528')]
[2024-10-20 17:57:35,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 7348224. Throughput: 0: 967.3. Samples: 835636. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:57:35,734][00556] Avg episode reward: [(0, '19.123')]
[2024-10-20 17:57:38,739][13107] Updated weights for policy 0, policy_version 1798 (0.0034)
[2024-10-20 17:57:40,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3959.4, 300 sec: 3901.6). Total num frames: 7372800. Throughput: 0: 972.8. Samples: 842272. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:57:40,739][00556] Avg episode reward: [(0, '19.286')]
[2024-10-20 17:57:45,732][00556] Fps is (10 sec: 4915.1, 60 sec: 4096.0, 300 sec: 3901.6). Total num frames: 7397376. Throughput: 0: 1007.3. Samples: 845900. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:57:45,739][00556] Avg episode reward: [(0, '17.974')]
[2024-10-20 17:57:48,262][13107] Updated weights for policy 0, policy_version 1808 (0.0019)
[2024-10-20 17:57:50,740][00556] Fps is (10 sec: 3683.8, 60 sec: 3890.7, 300 sec: 3873.8). Total num frames: 7409664. Throughput: 0: 996.2. Samples: 851212. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:57:50,743][00556] Avg episode reward: [(0, '18.386')]
[2024-10-20 17:57:55,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 7430144. Throughput: 0: 962.8. Samples: 856844. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:57:55,735][00556] Avg episode reward: [(0, '18.999')]
[2024-10-20 17:57:58,586][13107] Updated weights for policy 0, policy_version 1818 (0.0019)
[2024-10-20 17:58:00,732][00556] Fps is (10 sec: 4508.9, 60 sec: 4096.2, 300 sec: 3915.5). Total num frames: 7454720. Throughput: 0: 987.2. Samples: 860446. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:58:00,735][00556] Avg episode reward: [(0, '19.445')]
[2024-10-20 17:58:00,738][13094] Saving new best policy, reward=19.445!
[2024-10-20 17:58:05,732][00556] Fps is (10 sec: 4096.1, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 7471104. Throughput: 0: 1015.7. Samples: 866546. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:58:05,734][00556] Avg episode reward: [(0, '19.949')]
[2024-10-20 17:58:05,745][13094] Saving new best policy, reward=19.949!
[2024-10-20 17:58:10,105][13107] Updated weights for policy 0, policy_version 1828 (0.0031)
[2024-10-20 17:58:10,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3887.7). Total num frames: 7487488. Throughput: 0: 957.6. Samples: 871146. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:58:10,734][00556] Avg episode reward: [(0, '20.576')]
[2024-10-20 17:58:10,737][13094] Saving new best policy, reward=20.576!
[2024-10-20 17:58:15,732][00556] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3915.5). Total num frames: 7512064. Throughput: 0: 958.5. Samples: 874576. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:58:15,735][00556] Avg episode reward: [(0, '20.085')]
[2024-10-20 17:58:18,915][13107] Updated weights for policy 0, policy_version 1838 (0.0021)
[2024-10-20 17:58:20,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3901.6). Total num frames: 7532544. Throughput: 0: 1025.1. Samples: 881764. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:58:20,738][00556] Avg episode reward: [(0, '18.821')]
[2024-10-20 17:58:25,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 7548928. Throughput: 0: 974.8. Samples: 886138. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:58:25,736][00556] Avg episode reward: [(0, '17.704')]
[2024-10-20 17:58:30,314][13107] Updated weights for policy 0, policy_version 1848 (0.0040)
[2024-10-20 17:58:30,733][00556] Fps is (10 sec: 3686.1, 60 sec: 3891.2, 300 sec: 3915.5). Total num frames: 7569408. Throughput: 0: 961.9. Samples: 889184. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 17:58:30,738][00556] Avg episode reward: [(0, '17.782')]
[2024-10-20 17:58:35,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4096.0, 300 sec: 3915.5). Total num frames: 7593984. Throughput: 0: 999.7. Samples: 896190. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:58:35,739][00556] Avg episode reward: [(0, '19.275')]
[2024-10-20 17:58:35,751][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001854_7593984.pth...
[2024-10-20 17:58:35,903][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001624_6651904.pth
[2024-10-20 17:58:40,732][00556] Fps is (10 sec: 3686.7, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 7606272. Throughput: 0: 989.3. Samples: 901364. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:58:40,734][00556] Avg episode reward: [(0, '20.032')]
[2024-10-20 17:58:40,955][13107] Updated weights for policy 0, policy_version 1858 (0.0018)
[2024-10-20 17:58:45,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3901.6). Total num frames: 7626752. Throughput: 0: 958.1. Samples: 903562. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:58:45,736][00556] Avg episode reward: [(0, '20.103')]
[2024-10-20 17:58:50,329][13107] Updated weights for policy 0, policy_version 1868 (0.0031)
[2024-10-20 17:58:50,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4028.2, 300 sec: 3929.4). Total num frames: 7651328. Throughput: 0: 980.7. Samples: 910676. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:58:50,735][00556] Avg episode reward: [(0, '20.564')]
[2024-10-20 17:58:55,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3915.5). Total num frames: 7671808. Throughput: 0: 1016.5. Samples: 916888. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:58:55,741][00556] Avg episode reward: [(0, '18.745')]
[2024-10-20 17:59:00,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3887.7). Total num frames: 7684096. Throughput: 0: 987.6. Samples: 919018. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:59:00,739][00556] Avg episode reward: [(0, '19.110')]
[2024-10-20 17:59:01,841][13107] Updated weights for policy 0, policy_version 1878 (0.0028)
[2024-10-20 17:59:05,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3929.4). Total num frames: 7708672. Throughput: 0: 965.9. Samples: 925230. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:59:05,737][00556] Avg episode reward: [(0, '17.969')]
[2024-10-20 17:59:10,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3929.4). Total num frames: 7729152. Throughput: 0: 1024.9. Samples: 932260. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2024-10-20 17:59:10,738][00556] Avg episode reward: [(0, '19.657')]
[2024-10-20 17:59:10,817][13107] Updated weights for policy 0, policy_version 1888 (0.0020)
[2024-10-20 17:59:15,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 7745536. Throughput: 0: 1004.7. Samples: 934396. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:59:15,739][00556] Avg episode reward: [(0, '19.439')]
[2024-10-20 17:59:20,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3915.5). Total num frames: 7766016. Throughput: 0: 965.9. Samples: 939656. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:59:20,738][00556] Avg episode reward: [(0, '21.145')]
[2024-10-20 17:59:20,744][13094] Saving new best policy, reward=21.145!
[2024-10-20 17:59:21,944][13107] Updated weights for policy 0, policy_version 1898 (0.0044)
[2024-10-20 17:59:25,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3943.3). Total num frames: 7790592. Throughput: 0: 1008.4. Samples: 946744. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:59:25,735][00556] Avg episode reward: [(0, '19.946')]
[2024-10-20 17:59:30,735][00556] Fps is (10 sec: 4095.0, 60 sec: 3959.4, 300 sec: 3915.5). Total num frames: 7806976. Throughput: 0: 1029.2. Samples: 949880. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:59:30,739][00556] Avg episode reward: [(0, '20.082')]
[2024-10-20 17:59:32,806][13107] Updated weights for policy 0, policy_version 1908 (0.0021)
[2024-10-20 17:59:35,732][00556] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3915.5). Total num frames: 7823360. Throughput: 0: 963.6. Samples: 954040. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2024-10-20 17:59:35,739][00556] Avg episode reward: [(0, '19.578')]
[2024-10-20 17:59:40,732][00556] Fps is (10 sec: 4097.0, 60 sec: 4027.7, 300 sec: 3943.3). Total num frames: 7847936. Throughput: 0: 982.9. Samples: 961118. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:59:40,734][00556] Avg episode reward: [(0, '18.151')]
[2024-10-20 17:59:42,040][13107] Updated weights for policy 0, policy_version 1918 (0.0023)
[2024-10-20 17:59:45,732][00556] Fps is (10 sec: 4505.6, 60 sec: 4027.7, 300 sec: 3929.4). Total num frames: 7868416. Throughput: 0: 1013.6. Samples: 964632. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2024-10-20 17:59:45,734][00556] Avg episode reward: [(0, '18.588')]
[2024-10-20 17:59:50,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3915.6). Total num frames: 7884800. Throughput: 0: 983.7. Samples: 969498. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:59:50,737][00556] Avg episode reward: [(0, '19.319')]
[2024-10-20 17:59:53,561][13107] Updated weights for policy 0, policy_version 1928 (0.0033)
[2024-10-20 17:59:55,732][00556] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3929.4). Total num frames: 7905280. Throughput: 0: 960.5. Samples: 975482. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 17:59:55,735][00556] Avg episode reward: [(0, '18.140')]
[2024-10-20 18:00:00,732][00556] Fps is (10 sec: 4505.5, 60 sec: 4096.0, 300 sec: 3943.3). Total num frames: 7929856. Throughput: 0: 992.4. Samples: 979054. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 18:00:00,739][00556] Avg episode reward: [(0, '19.109')]
[2024-10-20 18:00:02,625][13107] Updated weights for policy 0, policy_version 1938 (0.0030)
[2024-10-20 18:00:05,732][00556] Fps is (10 sec: 4096.0, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 7946240. Throughput: 0: 1004.9. Samples: 984876. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 18:00:05,739][00556] Avg episode reward: [(0, '19.511')]
[2024-10-20 18:00:10,732][00556] Fps is (10 sec: 3276.9, 60 sec: 3891.2, 300 sec: 3915.5). Total num frames: 7962624. Throughput: 0: 960.2. Samples: 989954. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2024-10-20 18:00:10,735][00556] Avg episode reward: [(0, '19.482')]
[2024-10-20 18:00:13,666][13107] Updated weights for policy 0, policy_version 1948 (0.0033)
[2024-10-20 18:00:15,732][00556] Fps is (10 sec: 4096.0, 60 sec: 4027.7, 300 sec: 3943.3). Total num frames: 7987200. Throughput: 0: 971.3. Samples: 993584. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2024-10-20 18:00:15,734][00556] Avg episode reward: [(0, '22.004')]
[2024-10-20 18:00:15,749][13094] Saving new best policy, reward=22.004!
[2024-10-20 18:00:19,992][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
[2024-10-20 18:00:20,004][13094] Stopping Batcher_0...
[2024-10-20 18:00:20,005][00556] Component Batcher_0 stopped!
[2024-10-20 18:00:20,006][13094] Loop batcher_evt_loop terminating...
[2024-10-20 18:00:20,088][13107] Weights refcount: 2 0
[2024-10-20 18:00:20,095][00556] Component InferenceWorker_p0-w0 stopped!
[2024-10-20 18:00:20,100][13107] Stopping InferenceWorker_p0-w0...
[2024-10-20 18:00:20,100][13107] Loop inference_proc0-0_evt_loop terminating...
[2024-10-20 18:00:20,230][13094] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001738_7118848.pth
[2024-10-20 18:00:20,255][13094] Saving new best policy, reward=22.116!
[2024-10-20 18:00:20,486][13094] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
[2024-10-20 18:00:20,675][00556] Component LearnerWorker_p0 stopped!
[2024-10-20 18:00:20,681][13094] Stopping LearnerWorker_p0...
[2024-10-20 18:00:20,682][13094] Loop learner_proc0_evt_loop terminating...
[2024-10-20 18:00:20,747][00556] Component RolloutWorker_w6 stopped!
[2024-10-20 18:00:20,752][13114] Stopping RolloutWorker_w6...
[2024-10-20 18:00:20,753][13114] Loop rollout_proc6_evt_loop terminating...
[2024-10-20 18:00:20,809][00556] Component RolloutWorker_w2 stopped!
[2024-10-20 18:00:20,814][13110] Stopping RolloutWorker_w2...
[2024-10-20 18:00:20,815][13110] Loop rollout_proc2_evt_loop terminating...
[2024-10-20 18:00:20,859][00556] Component RolloutWorker_w1 stopped!
[2024-10-20 18:00:20,859][13109] Stopping RolloutWorker_w1...
[2024-10-20 18:00:20,864][13109] Loop rollout_proc1_evt_loop terminating...
[2024-10-20 18:00:20,875][00556] Component RolloutWorker_w5 stopped!
[2024-10-20 18:00:20,874][13112] Stopping RolloutWorker_w5...
[2024-10-20 18:00:20,878][13112] Loop rollout_proc5_evt_loop terminating...
[2024-10-20 18:00:20,898][00556] Component RolloutWorker_w4 stopped!
[2024-10-20 18:00:20,900][13113] Stopping RolloutWorker_w4...
[2024-10-20 18:00:20,901][13113] Loop rollout_proc4_evt_loop terminating...
[2024-10-20 18:00:20,903][00556] Component RolloutWorker_w0 stopped!
[2024-10-20 18:00:20,907][13108] Stopping RolloutWorker_w0...
[2024-10-20 18:00:20,913][13111] Stopping RolloutWorker_w3...
[2024-10-20 18:00:20,914][13111] Loop rollout_proc3_evt_loop terminating...
[2024-10-20 18:00:20,914][00556] Component RolloutWorker_w3 stopped!
[2024-10-20 18:00:20,921][00556] Component RolloutWorker_w7 stopped!
[2024-10-20 18:00:20,923][13115] Stopping RolloutWorker_w7...
[2024-10-20 18:00:20,924][00556] Waiting for process learner_proc0 to stop...
[2024-10-20 18:00:20,928][13108] Loop rollout_proc0_evt_loop terminating...
[2024-10-20 18:00:20,932][13115] Loop rollout_proc7_evt_loop terminating...
[2024-10-20 18:00:22,753][00556] Waiting for process inference_proc0-0 to join...
[2024-10-20 18:00:22,760][00556] Waiting for process rollout_proc0 to join...
[2024-10-20 18:00:25,123][00556] Waiting for process rollout_proc1 to join...
[2024-10-20 18:00:25,127][00556] Waiting for process rollout_proc2 to join...
[2024-10-20 18:00:25,130][00556] Waiting for process rollout_proc3 to join...
[2024-10-20 18:00:25,138][00556] Waiting for process rollout_proc4 to join...
[2024-10-20 18:00:25,142][00556] Waiting for process rollout_proc5 to join...
[2024-10-20 18:00:25,147][00556] Waiting for process rollout_proc6 to join...
[2024-10-20 18:00:25,151][00556] Waiting for process rollout_proc7 to join...
[2024-10-20 18:00:25,154][00556] Batcher 0 profile tree view:
batching: 27.0408, releasing_batches: 0.0257
[2024-10-20 18:00:25,156][00556] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
wait_policy_total: 403.2960
update_model: 8.7968
weight_update: 0.0044
one_step: 0.0084
handle_policy_step: 589.4419
deserialize: 14.4878, stack: 2.9567, obs_to_device_normalize: 120.9362, forward: 314.2505, send_messages: 28.3503
prepare_outputs: 80.5140
to_cpu: 46.0632
[2024-10-20 18:00:25,158][00556] Learner 0 profile tree view:
misc: 0.0048, prepare_batch: 13.1270
train: 75.0890
epoch_init: 0.0063, minibatch_init: 0.0099, losses_postprocess: 0.6750, kl_divergence: 0.6642, after_optimizer: 3.2268
calculate_losses: 26.8753
losses_init: 0.0032, forward_head: 1.4167, bptt_initial: 18.0554, tail: 1.1208, advantages_returns: 0.2937, losses: 3.7877
bptt: 1.9114
bptt_forward_core: 1.7981
update: 42.9522
clip: 0.8273
[2024-10-20 18:00:25,159][00556] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.3110, enqueue_policy_requests: 94.9974, env_step: 814.1256, overhead: 13.4528, complete_rollouts: 6.9011
save_policy_outputs: 20.7421
split_output_tensors: 8.0932
[2024-10-20 18:00:25,163][00556] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.4022, enqueue_policy_requests: 95.2253, env_step: 810.8649, overhead: 13.2098, complete_rollouts: 6.5797
save_policy_outputs: 20.1699
split_output_tensors: 8.2991
[2024-10-20 18:00:25,165][00556] Loop Runner_EvtLoop terminating...
[2024-10-20 18:00:25,166][00556] Runner profile tree view:
main_loop: 1067.1793
[2024-10-20 18:00:25,168][00556] Collected {0: 8007680}, FPS: 3749.9
[2024-10-20 18:00:25,200][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2024-10-20 18:00:25,201][00556] Overriding arg 'num_workers' with value 1 passed from command line
[2024-10-20 18:00:25,203][00556] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-10-20 18:00:25,205][00556] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-10-20 18:00:25,207][00556] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-10-20 18:00:25,208][00556] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-10-20 18:00:25,209][00556] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2024-10-20 18:00:25,211][00556] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-10-20 18:00:25,212][00556] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2024-10-20 18:00:25,213][00556] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2024-10-20 18:00:25,217][00556] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-10-20 18:00:25,220][00556] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-10-20 18:00:25,222][00556] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-10-20 18:00:25,224][00556] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-10-20 18:00:25,226][00556] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-10-20 18:00:25,255][00556] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 18:00:25,257][00556] RunningMeanStd input shape: (1,)
[2024-10-20 18:00:25,271][00556] ConvEncoder: input_channels=3
[2024-10-20 18:00:25,313][00556] Conv encoder output size: 512
[2024-10-20 18:00:25,315][00556] Policy head output size: 512
[2024-10-20 18:00:25,333][00556] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
[2024-10-20 18:00:25,787][00556] Num frames 100...
[2024-10-20 18:00:25,909][00556] Num frames 200...
[2024-10-20 18:00:26,028][00556] Num frames 300...
[2024-10-20 18:00:26,162][00556] Num frames 400...
[2024-10-20 18:00:26,286][00556] Num frames 500...
[2024-10-20 18:00:26,346][00556] Avg episode rewards: #0: 9.010, true rewards: #0: 5.010
[2024-10-20 18:00:26,348][00556] Avg episode reward: 9.010, avg true_objective: 5.010
[2024-10-20 18:00:26,476][00556] Num frames 600...
[2024-10-20 18:00:26,601][00556] Num frames 700...
[2024-10-20 18:00:26,727][00556] Num frames 800...
[2024-10-20 18:00:26,854][00556] Num frames 900...
[2024-10-20 18:00:26,976][00556] Num frames 1000...
[2024-10-20 18:00:27,103][00556] Num frames 1100...
[2024-10-20 18:00:27,229][00556] Num frames 1200...
[2024-10-20 18:00:27,354][00556] Num frames 1300...
[2024-10-20 18:00:27,535][00556] Avg episode rewards: #0: 13.485, true rewards: #0: 6.985
[2024-10-20 18:00:27,537][00556] Avg episode reward: 13.485, avg true_objective: 6.985
[2024-10-20 18:00:27,546][00556] Num frames 1400...
[2024-10-20 18:00:27,692][00556] Num frames 1500...
[2024-10-20 18:00:27,813][00556] Num frames 1600...
[2024-10-20 18:00:27,936][00556] Num frames 1700...
[2024-10-20 18:00:28,057][00556] Num frames 1800...
[2024-10-20 18:00:28,189][00556] Num frames 1900...
[2024-10-20 18:00:28,317][00556] Num frames 2000...
[2024-10-20 18:00:28,446][00556] Num frames 2100...
[2024-10-20 18:00:28,567][00556] Num frames 2200...
[2024-10-20 18:00:28,689][00556] Num frames 2300...
[2024-10-20 18:00:28,810][00556] Num frames 2400...
[2024-10-20 18:00:28,929][00556] Avg episode rewards: #0: 17.177, true rewards: #0: 8.177
[2024-10-20 18:00:28,930][00556] Avg episode reward: 17.177, avg true_objective: 8.177
[2024-10-20 18:00:28,987][00556] Num frames 2500...
[2024-10-20 18:00:29,107][00556] Num frames 2600...
[2024-10-20 18:00:29,236][00556] Num frames 2700...
[2024-10-20 18:00:29,357][00556] Num frames 2800...
[2024-10-20 18:00:29,484][00556] Num frames 2900...
[2024-10-20 18:00:29,607][00556] Num frames 3000...
[2024-10-20 18:00:29,725][00556] Num frames 3100...
[2024-10-20 18:00:29,846][00556] Num frames 3200...
[2024-10-20 18:00:29,968][00556] Num frames 3300...
[2024-10-20 18:00:30,086][00556] Num frames 3400...
[2024-10-20 18:00:30,217][00556] Num frames 3500...
[2024-10-20 18:00:30,291][00556] Avg episode rewards: #0: 19.288, true rewards: #0: 8.787
[2024-10-20 18:00:30,293][00556] Avg episode reward: 19.288, avg true_objective: 8.787
[2024-10-20 18:00:30,405][00556] Num frames 3600...
[2024-10-20 18:00:30,535][00556] Num frames 3700...
[2024-10-20 18:00:30,657][00556] Num frames 3800...
[2024-10-20 18:00:30,787][00556] Num frames 3900...
[2024-10-20 18:00:30,913][00556] Num frames 4000...
[2024-10-20 18:00:31,038][00556] Num frames 4100...
[2024-10-20 18:00:31,161][00556] Avg episode rewards: #0: 18.310, true rewards: #0: 8.310
[2024-10-20 18:00:31,163][00556] Avg episode reward: 18.310, avg true_objective: 8.310
[2024-10-20 18:00:31,229][00556] Num frames 4200...
[2024-10-20 18:00:31,354][00556] Num frames 4300...
[2024-10-20 18:00:31,485][00556] Num frames 4400...
[2024-10-20 18:00:31,612][00556] Num frames 4500...
[2024-10-20 18:00:31,735][00556] Num frames 4600...
[2024-10-20 18:00:31,801][00556] Avg episode rewards: #0: 16.847, true rewards: #0: 7.680
[2024-10-20 18:00:31,803][00556] Avg episode reward: 16.847, avg true_objective: 7.680
[2024-10-20 18:00:31,919][00556] Num frames 4700...
[2024-10-20 18:00:32,041][00556] Num frames 4800...
[2024-10-20 18:00:32,199][00556] Num frames 4900...
[2024-10-20 18:00:32,329][00556] Num frames 5000...
[2024-10-20 18:00:32,464][00556] Num frames 5100...
[2024-10-20 18:00:32,589][00556] Num frames 5200...
[2024-10-20 18:00:32,718][00556] Num frames 5300...
[2024-10-20 18:00:32,844][00556] Num frames 5400...
[2024-10-20 18:00:32,966][00556] Num frames 5500...
[2024-10-20 18:00:33,090][00556] Num frames 5600...
[2024-10-20 18:00:33,214][00556] Num frames 5700...
[2024-10-20 18:00:33,362][00556] Num frames 5800...
[2024-10-20 18:00:33,532][00556] Avg episode rewards: #0: 18.983, true rewards: #0: 8.411
[2024-10-20 18:00:33,534][00556] Avg episode reward: 18.983, avg true_objective: 8.411
[2024-10-20 18:00:33,557][00556] Num frames 5900...
[2024-10-20 18:00:33,722][00556] Num frames 6000...
[2024-10-20 18:00:33,892][00556] Num frames 6100...
[2024-10-20 18:00:34,060][00556] Num frames 6200...
[2024-10-20 18:00:34,224][00556] Num frames 6300...
[2024-10-20 18:00:34,405][00556] Num frames 6400...
[2024-10-20 18:00:34,575][00556] Num frames 6500...
[2024-10-20 18:00:34,737][00556] Num frames 6600...
[2024-10-20 18:00:34,908][00556] Num frames 6700...
[2024-10-20 18:00:35,080][00556] Num frames 6800...
[2024-10-20 18:00:35,249][00556] Num frames 6900...
[2024-10-20 18:00:35,452][00556] Num frames 7000...
[2024-10-20 18:00:35,633][00556] Num frames 7100...
[2024-10-20 18:00:35,809][00556] Num frames 7200...
[2024-10-20 18:00:35,981][00556] Num frames 7300...
[2024-10-20 18:00:36,160][00556] Num frames 7400...
[2024-10-20 18:00:36,283][00556] Num frames 7500...
[2024-10-20 18:00:36,431][00556] Num frames 7600...
[2024-10-20 18:00:36,561][00556] Num frames 7700...
[2024-10-20 18:00:36,640][00556] Avg episode rewards: #0: 21.771, true rewards: #0: 9.646
[2024-10-20 18:00:36,641][00556] Avg episode reward: 21.771, avg true_objective: 9.646
[2024-10-20 18:00:36,745][00556] Num frames 7800...
[2024-10-20 18:00:36,867][00556] Num frames 7900...
[2024-10-20 18:00:36,994][00556] Num frames 8000...
[2024-10-20 18:00:37,116][00556] Num frames 8100...
[2024-10-20 18:00:37,240][00556] Num frames 8200...
[2024-10-20 18:00:37,364][00556] Num frames 8300...
[2024-10-20 18:00:37,507][00556] Num frames 8400...
[2024-10-20 18:00:37,636][00556] Num frames 8500...
[2024-10-20 18:00:37,759][00556] Num frames 8600...
[2024-10-20 18:00:37,883][00556] Num frames 8700...
[2024-10-20 18:00:38,009][00556] Num frames 8800...
[2024-10-20 18:00:38,129][00556] Num frames 8900...
[2024-10-20 18:00:38,279][00556] Avg episode rewards: #0: 22.527, true rewards: #0: 9.971
[2024-10-20 18:00:38,280][00556] Avg episode reward: 22.527, avg true_objective: 9.971
[2024-10-20 18:00:38,314][00556] Num frames 9000...
[2024-10-20 18:00:38,446][00556] Num frames 9100...
[2024-10-20 18:00:38,574][00556] Num frames 9200...
[2024-10-20 18:00:38,695][00556] Num frames 9300...
[2024-10-20 18:00:38,816][00556] Num frames 9400...
[2024-10-20 18:00:38,938][00556] Num frames 9500...
[2024-10-20 18:00:39,057][00556] Num frames 9600...
[2024-10-20 18:00:39,179][00556] Num frames 9700...
[2024-10-20 18:00:39,299][00556] Num frames 9800...
[2024-10-20 18:00:39,427][00556] Num frames 9900...
[2024-10-20 18:00:39,558][00556] Num frames 10000...
[2024-10-20 18:00:39,680][00556] Num frames 10100...
[2024-10-20 18:00:39,800][00556] Num frames 10200...
[2024-10-20 18:00:39,890][00556] Avg episode rewards: #0: 23.326, true rewards: #0: 10.226
[2024-10-20 18:00:39,892][00556] Avg episode reward: 23.326, avg true_objective: 10.226
[2024-10-20 18:01:43,312][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2024-10-20 18:01:43,800][00556] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2024-10-20 18:01:43,802][00556] Overriding arg 'num_workers' with value 1 passed from command line
[2024-10-20 18:01:43,804][00556] Adding new argument 'no_render'=True that is not in the saved config file!
[2024-10-20 18:01:43,806][00556] Adding new argument 'save_video'=True that is not in the saved config file!
[2024-10-20 18:01:43,808][00556] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2024-10-20 18:01:43,810][00556] Adding new argument 'video_name'=None that is not in the saved config file!
[2024-10-20 18:01:43,812][00556] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2024-10-20 18:01:43,813][00556] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2024-10-20 18:01:43,814][00556] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2024-10-20 18:01:43,815][00556] Adding new argument 'hf_repository'='jerryvc/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2024-10-20 18:01:43,818][00556] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2024-10-20 18:01:43,819][00556] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2024-10-20 18:01:43,820][00556] Adding new argument 'train_script'=None that is not in the saved config file!
[2024-10-20 18:01:43,821][00556] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2024-10-20 18:01:43,822][00556] Using frameskip 1 and render_action_repeat=4 for evaluation
[2024-10-20 18:01:43,863][00556] RunningMeanStd input shape: (3, 72, 128)
[2024-10-20 18:01:43,866][00556] RunningMeanStd input shape: (1,)
[2024-10-20 18:01:43,884][00556] ConvEncoder: input_channels=3
[2024-10-20 18:01:43,950][00556] Conv encoder output size: 512
[2024-10-20 18:01:43,952][00556] Policy head output size: 512
[2024-10-20 18:01:43,982][00556] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000001955_8007680.pth...
[2024-10-20 18:01:44,618][00556] Num frames 100...
[2024-10-20 18:01:44,778][00556] Num frames 200...
[2024-10-20 18:01:44,937][00556] Num frames 300...
[2024-10-20 18:01:45,113][00556] Num frames 400...
[2024-10-20 18:01:45,273][00556] Num frames 500...
[2024-10-20 18:01:45,431][00556] Num frames 600...
[2024-10-20 18:01:45,596][00556] Num frames 700...
[2024-10-20 18:01:45,757][00556] Num frames 800...
[2024-10-20 18:01:45,917][00556] Num frames 900...
[2024-10-20 18:01:46,085][00556] Num frames 1000...
[2024-10-20 18:01:46,253][00556] Num frames 1100...
[2024-10-20 18:01:46,422][00556] Num frames 1200...
[2024-10-20 18:01:46,594][00556] Num frames 1300...
[2024-10-20 18:01:46,782][00556] Num frames 1400...
[2024-10-20 18:01:46,944][00556] Num frames 1500...
[2024-10-20 18:01:47,116][00556] Num frames 1600...
[2024-10-20 18:01:47,343][00556] Avg episode rewards: #0: 39.890, true rewards: #0: 16.890
[2024-10-20 18:01:47,346][00556] Avg episode reward: 39.890, avg true_objective: 16.890
[2024-10-20 18:01:47,365][00556] Num frames 1700...
[2024-10-20 18:01:47,545][00556] Num frames 1800...
[2024-10-20 18:01:47,728][00556] Num frames 1900...
[2024-10-20 18:01:47,938][00556] Num frames 2000...
[2024-10-20 18:01:48,127][00556] Num frames 2100...
[2024-10-20 18:01:48,317][00556] Num frames 2200...
[2024-10-20 18:01:48,518][00556] Num frames 2300...
[2024-10-20 18:01:48,703][00556] Num frames 2400...
[2024-10-20 18:01:48,886][00556] Num frames 2500...
[2024-10-20 18:01:49,074][00556] Num frames 2600...
[2024-10-20 18:01:49,217][00556] Avg episode rewards: #0: 28.745, true rewards: #0: 13.245
[2024-10-20 18:01:49,219][00556] Avg episode reward: 28.745, avg true_objective: 13.245
[2024-10-20 18:01:49,320][00556] Num frames 2700...
[2024-10-20 18:01:49,506][00556] Num frames 2800...
[2024-10-20 18:01:49,705][00556] Num frames 2900...
[2024-10-20 18:01:49,886][00556] Num frames 3000...
[2024-10-20 18:01:50,055][00556] Num frames 3100...
[2024-10-20 18:01:50,232][00556] Num frames 3200...
[2024-10-20 18:01:50,414][00556] Num frames 3300...
[2024-10-20 18:01:50,543][00556] Num frames 3400...
[2024-10-20 18:01:50,659][00556] Avg episode rewards: #0: 24.163, true rewards: #0: 11.497
[2024-10-20 18:01:50,661][00556] Avg episode reward: 24.163, avg true_objective: 11.497
[2024-10-20 18:01:50,725][00556] Num frames 3500...
[2024-10-20 18:01:50,847][00556] Num frames 3600...
[2024-10-20 18:01:50,972][00556] Num frames 3700...
[2024-10-20 18:01:51,096][00556] Num frames 3800...
[2024-10-20 18:01:51,217][00556] Num frames 3900...
[2024-10-20 18:01:51,347][00556] Num frames 4000...
[2024-10-20 18:01:51,478][00556] Num frames 4100...
[2024-10-20 18:01:51,600][00556] Num frames 4200...
[2024-10-20 18:01:51,723][00556] Num frames 4300...
[2024-10-20 18:01:51,846][00556] Num frames 4400...
[2024-10-20 18:01:51,964][00556] Num frames 4500...
[2024-10-20 18:01:52,085][00556] Num frames 4600...
[2024-10-20 18:01:52,144][00556] Avg episode rewards: #0: 24.753, true rewards: #0: 11.502
[2024-10-20 18:01:52,146][00556] Avg episode reward: 24.753, avg true_objective: 11.502
[2024-10-20 18:01:52,274][00556] Num frames 4700...
[2024-10-20 18:01:52,413][00556] Num frames 4800...
[2024-10-20 18:01:52,593][00556] Num frames 4900...
[2024-10-20 18:01:52,759][00556] Num frames 5000...
[2024-10-20 18:01:52,921][00556] Num frames 5100...
[2024-10-20 18:01:53,107][00556] Avg episode rewards: #0: 21.754, true rewards: #0: 10.354
[2024-10-20 18:01:53,110][00556] Avg episode reward: 21.754, avg true_objective: 10.354
[2024-10-20 18:01:53,154][00556] Num frames 5200...
[2024-10-20 18:01:53,315][00556] Num frames 5300...
[2024-10-20 18:01:53,489][00556] Num frames 5400...
[2024-10-20 18:01:53,658][00556] Num frames 5500...
[2024-10-20 18:01:53,830][00556] Num frames 5600...
[2024-10-20 18:01:54,001][00556] Num frames 5700...
[2024-10-20 18:01:54,175][00556] Num frames 5800...
[2024-10-20 18:01:54,353][00556] Num frames 5900...
[2024-10-20 18:01:54,537][00556] Num frames 6000...
[2024-10-20 18:01:54,667][00556] Avg episode rewards: #0: 20.735, true rewards: #0: 10.068
[2024-10-20 18:01:54,669][00556] Avg episode reward: 20.735, avg true_objective: 10.068
[2024-10-20 18:01:54,773][00556] Num frames 6100...
[2024-10-20 18:01:54,949][00556] Num frames 6200...
[2024-10-20 18:01:55,074][00556] Num frames 6300...
[2024-10-20 18:01:55,198][00556] Num frames 6400...
[2024-10-20 18:01:55,322][00556] Num frames 6500...
[2024-10-20 18:01:55,455][00556] Num frames 6600...
[2024-10-20 18:01:55,583][00556] Num frames 6700...
[2024-10-20 18:01:55,707][00556] Num frames 6800...
[2024-10-20 18:01:55,829][00556] Num frames 6900...
[2024-10-20 18:01:55,948][00556] Num frames 7000...
[2024-10-20 18:01:56,007][00556] Avg episode rewards: #0: 20.573, true rewards: #0: 10.001
[2024-10-20 18:01:56,009][00556] Avg episode reward: 20.573, avg true_objective: 10.001
[2024-10-20 18:01:56,133][00556] Num frames 7100...
[2024-10-20 18:01:56,254][00556] Num frames 7200...
[2024-10-20 18:01:56,376][00556] Num frames 7300...
[2024-10-20 18:01:56,516][00556] Num frames 7400...
[2024-10-20 18:01:56,638][00556] Num frames 7500...
[2024-10-20 18:01:56,759][00556] Num frames 7600...
[2024-10-20 18:01:56,882][00556] Num frames 7700...
[2024-10-20 18:01:57,009][00556] Num frames 7800...
[2024-10-20 18:01:57,149][00556] Num frames 7900...
[2024-10-20 18:01:57,327][00556] Num frames 8000...
[2024-10-20 18:01:57,504][00556] Num frames 8100...
[2024-10-20 18:01:57,656][00556] Num frames 8200...
[2024-10-20 18:01:57,792][00556] Num frames 8300...
[2024-10-20 18:01:57,919][00556] Num frames 8400...
[2024-10-20 18:01:58,028][00556] Avg episode rewards: #0: 22.301, true rewards: #0: 10.551
[2024-10-20 18:01:58,030][00556] Avg episode reward: 22.301, avg true_objective: 10.551
[2024-10-20 18:01:58,106][00556] Num frames 8500...
[2024-10-20 18:01:58,233][00556] Num frames 8600...
[2024-10-20 18:01:58,355][00556] Num frames 8700...
[2024-10-20 18:01:58,491][00556] Num frames 8800...
[2024-10-20 18:01:58,580][00556] Avg episode rewards: #0: 20.695, true rewards: #0: 9.806
[2024-10-20 18:01:58,581][00556] Avg episode reward: 20.695, avg true_objective: 9.806
[2024-10-20 18:01:58,676][00556] Num frames 8900...
[2024-10-20 18:01:58,803][00556] Num frames 9000...
[2024-10-20 18:01:58,929][00556] Num frames 9100...
[2024-10-20 18:01:59,054][00556] Num frames 9200...
[2024-10-20 18:01:59,182][00556] Num frames 9300...
[2024-10-20 18:01:59,306][00556] Num frames 9400...
[2024-10-20 18:01:59,437][00556] Num frames 9500...
[2024-10-20 18:01:59,559][00556] Num frames 9600...
[2024-10-20 18:01:59,692][00556] Num frames 9700...
[2024-10-20 18:01:59,814][00556] Num frames 9800...
[2024-10-20 18:01:59,942][00556] Num frames 9900...
[2024-10-20 18:02:00,071][00556] Num frames 10000...
[2024-10-20 18:02:00,196][00556] Num frames 10100...
[2024-10-20 18:02:00,337][00556] Avg episode rewards: #0: 21.469, true rewards: #0: 10.169
[2024-10-20 18:02:00,339][00556] Avg episode reward: 21.469, avg true_objective: 10.169
[2024-10-20 18:03:02,211][00556] Replay video saved to /content/train_dir/default_experiment/replay.mp4!