jet-taekyo commited on
Commit
cfe192d
·
verified ·
1 Parent(s): e4212e7

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,713 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:714
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What does the term 'rights, opportunities, or access' encompass
46
+ in this framework?
47
+ sentences:
48
+ - "10 \nGAI systems can ease the unintentional production or dissemination of false,\
49
+ \ inaccurate, or misleading \ncontent (misinformation) at scale, particularly\
50
+ \ if the content stems from confabulations. \nGAI systems can also ease the deliberate\
51
+ \ production or dissemination of false or misleading information \n(disinformation)\
52
+ \ at scale, where an actor has the explicit intent to deceive or cause harm to\
53
+ \ others. Even \nvery subtle changes to text or images can manipulate human and\
54
+ \ machine perception. \nSimilarly, GAI systems could enable a higher degree of\
55
+ \ sophistication for malicious actors to produce \ndisinformation that is targeted\
56
+ \ towards specific demographics. Current and emerging multimodal models \nmake\
57
+ \ it possible to generate both text-based disinformation and highly realistic\
58
+ \ “deepfakes” – that is, \nsynthetic audiovisual content and photorealistic images.12\
59
+ \ Additional disinformation threats could be \nenabled by future GAI models trained\
60
+ \ on new data modalities."
61
+ - '74. See, e.g., Heather Morrison. Virtual Testing Puts Disabled Students at a
62
+ Disadvantage. Government
63
+
64
+ Technology. May 24, 2022.
65
+
66
+ https://www.govtech.com/education/k-12/virtual-testing-puts-disabled-students-at-a-disadvantage;
67
+
68
+ Lydia X. Z. Brown, Ridhi Shetty, Matt Scherer, and Andrew Crawford. Ableism And
69
+ Disability
70
+
71
+ Discrimination In New Surveillance Technologies: How new surveillance technologies
72
+ in education,
73
+
74
+ policing, health care, and the workplace disproportionately harm disabled people.
75
+ Center for Democracy
76
+
77
+ and Technology Report. May 24, 2022.
78
+
79
+ https://cdt.org/insights/ableism-and-disability-discrimination-in-new-surveillance-technologies-how­
80
+
81
+ new-surveillance-technologies-in-education-policing-health-care-and-the-workplace­
82
+
83
+ disproportionately-harm-disabled-people/
84
+
85
+ 69'
86
+ - "persons, Asian Americans and Pacific Islanders and other persons of color; members\
87
+ \ of religious minorities; \nwomen, girls, and non-binary people; lesbian, gay,\
88
+ \ bisexual, transgender, queer, and intersex (LGBTQI+) \npersons; older adults;\
89
+ \ persons with disabilities; persons who live in rural areas; and persons otherwise\
90
+ \ adversely \naffected by persistent poverty or inequality. \nRIGHTS, OPPORTUNITIES,\
91
+ \ OR ACCESS: “Rights, opportunities, or access” is used to indicate the scoping\
92
+ \ \nof this framework. It describes the set of: civil rights, civil liberties,\
93
+ \ and privacy, including freedom of speech, \nvoting, and protections from discrimination,\
94
+ \ excessive punishment, unlawful surveillance, and violations of \nprivacy and\
95
+ \ other freedoms in both public and private sector contexts; equal opportunities,\
96
+ \ including equitable \naccess to education, housing, credit, employment, and\
97
+ \ other programs; or, access to critical resources or"
98
+ - source_sentence: What are some broad negative risks associated with GAI design,
99
+ development, and deployment?
100
+ sentences:
101
+ - "actually occurring, or large-scale risks could occur); and broad GAI negative\
102
+ \ risks, \nincluding: Immature safety or risk cultures related to AI and GAI design,\
103
+ \ \ndevelopment and deployment, public information integrity risks, including\
104
+ \ impacts \non democratic processes, unknown long-term performance characteristics\
105
+ \ of GAI. \nInformation Integrity; Dangerous, \nViolent, or Hateful Content; CBRN\
106
+ \ \nInformation or Capabilities \nGV-1.3-007 Devise a plan to halt development\
107
+ \ or deployment of a GAI system that poses \nunacceptable negative risk. \nCBRN\
108
+ \ Information and Capability; \nInformation Security; Information \nIntegrity\
109
+ \ \nAI Actor Tasks: Governance and Oversight \n \nGOVERN 1.4: The risk management\
110
+ \ process and its outcomes are established through transparent policies, procedures,\
111
+ \ and other \ncontrols based on organizational risk priorities. \nAction ID \n\
112
+ Suggested Action \nGAI Risks \nGV-1.4-001 \nEstablish policies and mechanisms\
113
+ \ to prevent GAI systems from generating"
114
+ - "39 \nMS-3.3-004 \nProvide input for training materials about the capabilities\
115
+ \ and limitations of GAI \nsystems related to digital content transparency for\
116
+ \ AI Actors, other \nprofessionals, and the public about the societal impacts\
117
+ \ of AI and the role of \ndiverse and inclusive content generation. \nHuman-AI\
118
+ \ Configuration; \nInformation Integrity; Harmful Bias \nand Homogenization \n\
119
+ MS-3.3-005 \nRecord and integrate structured feedback about content provenance\
120
+ \ from \noperators, users, and potentially impacted communities through the use\
121
+ \ of \nmethods such as user research studies, focus groups, or community forums.\
122
+ \ \nActively seek feedback on generated content quality and potential biases.\
123
+ \ \nAssess the general awareness among end users and impacted communities \nabout\
124
+ \ the availability of these feedback channels. \nHuman-AI Configuration; \nInformation\
125
+ \ Integrity; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI Deployment,\
126
+ \ Affected Individuals and Communities, End-Users, Operation and Monitoring, TEVV"
127
+ - "NOTICE & \nEXPLANATION \nWHY THIS PRINCIPLE IS IMPORTANT\nThis section provides\
128
+ \ a brief summary of the problems which the principle seeks to address and protect\
129
+ \ \nagainst, including illustrative examples. \nAutomated systems now determine\
130
+ \ opportunities, from employment to credit, and directly shape the American \n\
131
+ public’s experiences, from the courtroom to online classrooms, in ways that profoundly\
132
+ \ impact people’s lives. But this \nexpansive impact is not always visible. An\
133
+ \ applicant might not know whether a person rejected their resume or a \nhiring\
134
+ \ algorithm moved them to the bottom of the list. A defendant in the courtroom\
135
+ \ might not know if a judge deny­\ning their bail is informed by an automated\
136
+ \ system that labeled them “high risk.” From correcting errors to contesting \n\
137
+ decisions, people are often denied the knowledge they need to address the impact\
138
+ \ of automated systems on their lives."
139
+ - source_sentence: Who should conduct the assessment of the impact of surveillance
140
+ on rights and opportunities?
141
+ sentences:
142
+ - "APPENDIX\n•\nJulia Simon-Mishel, Supervising Attorney, Philadelphia Legal Assistance\n\
143
+ •\nDr. Zachary Mahafza, Research & Data Analyst, Southern Poverty Law Center\n\
144
+ •\nJ. Khadijah Abdurahman, Tech Impact Network Research Fellow, AI Now Institute,\
145
+ \ UCLA C2I1, and\nUWA Law School\nPanelists separately described the increasing\
146
+ \ scope of technology use in providing for social welfare, including \nin fraud\
147
+ \ detection, digital ID systems, and other methods focused on improving efficiency\
148
+ \ and reducing cost. \nHowever, various panelists individually cautioned that\
149
+ \ these systems may reduce burden for government \nagencies by increasing the\
150
+ \ burden and agency of people using and interacting with these technologies. \n\
151
+ Additionally, these systems can produce feedback loops and compounded harm, collecting\
152
+ \ data from \ncommunities and using it to reinforce inequality. Various panelists\
153
+ \ suggested that these harms could be"
154
+ - "assessments, including data retention timelines and associated justification,\
155
+ \ and an assessment of the \nimpact of surveillance or data collection on rights,\
156
+ \ opportunities, and access. Where possible, this \nassessment of the impact of\
157
+ \ surveillance should be done by an independent party. Reporting should be \n\
158
+ provided in a clear and machine-readable manner. \n35"
159
+ - "access to education, housing, credit, employment, and other programs; or, access\
160
+ \ to critical resources or \nservices, such as healthcare, financial services,\
161
+ \ safety, social services, non-deceptive information about goods \nand services,\
162
+ \ and government benefits. \n10"
163
+ - source_sentence: How can voting-related systems impact privacy and security?
164
+ sentences:
165
+ - "as custody and divorce information, and home, work, or school environmental data);\
166
+ \ or have the reasonable potential \nto be used in ways that are likely to expose\
167
+ \ individuals to meaningful harm, such as a loss of privacy or financial harm\
168
+ \ \ndue to identity theft. Data and metadata generated by or about those who are\
169
+ \ not yet legal adults is also sensitive, even \nif not related to a sensitive\
170
+ \ domain. Such data includes, but is not limited to, numerical, text, image, audio,\
171
+ \ or video \ndata. “Sensitive domains” are those in which activities being conducted\
172
+ \ can cause material harms, including signifi­\ncant adverse effects on human\
173
+ \ rights such as autonomy and dignity, as well as civil liberties and civil rights.\
174
+ \ Domains \nthat have historically been singled out as deserving of enhanced data\
175
+ \ protections or where such enhanced protections \nare reasonably expected by\
176
+ \ the public include, but are not limited to, health, family planning and care,\
177
+ \ employment,"
178
+ - "agreed upon the importance of advisory boards and compensated community input\
179
+ \ early in the design process \n(before the technology is built and instituted).\
180
+ \ Various panelists also emphasized the importance of regulation \nthat includes\
181
+ \ limits to the type and cost of such technologies. \n56"
182
+ - "Surveillance and criminal justice system algorithms such as risk assessments,\
183
+ \ predictive \n policing, automated license plate readers, real-time facial\
184
+ \ recognition systems (especially \n those used in public places or during\
185
+ \ protected activities like peaceful protests), social media \n monitoring,\
186
+ \ and ankle monitoring devices; \nVoting-related systems such as signature matching\
187
+ \ tools; \nSystems with a potential privacy impact such as smart home systems\
188
+ \ and associated data, \n systems that use or collect health-related data,\
189
+ \ systems that use or collect education-related \n data, criminal justice\
190
+ \ system data, ad-targeting systems, and systems that perform big data \n \
191
+ \ analytics in order to build profiles or infer personal information about individuals;\
192
+ \ and \nAny system that has the meaningful potential to lead to algorithmic discrimination.\
193
+ \ \n• Equal opportunities, including but not limited to:"
194
+ - source_sentence: What impact do automated systems have on underserved communities?
195
+ sentences:
196
+ - "generation, summarization, search, and chat. These activities can take place\
197
+ \ within organizational \nsettings or in the public domain. \nOrganizations can\
198
+ \ restrict AI applications that cause harm, exceed stated risk tolerances, or\
199
+ \ that conflict \nwith their tolerances or values. Governance tools and protocols\
200
+ \ that are applied to other types of AI \nsystems can be applied to GAI systems.\
201
+ \ These plans and actions include: \n• Accessibility and reasonable \naccommodations\
202
+ \ \n• AI actor credentials and qualifications \n• Alignment to organizational\
203
+ \ values \n• Auditing and assessment \n• Change-management controls \n• Commercial\
204
+ \ use \n• Data provenance"
205
+ - "automated systems make on underserved communities and to institute proactive\
206
+ \ protections that support these \ncommunities. \n•\nAn automated system using\
207
+ \ nontraditional factors such as educational attainment and employment history\
208
+ \ as\npart of its loan underwriting and pricing model was found to be much more\
209
+ \ likely to charge an applicant who\nattended a Historically Black College or\
210
+ \ University (HBCU) higher loan prices for refinancing a student loan\nthan an\
211
+ \ applicant who did not attend an HBCU. This was found to be true even when controlling\
212
+ \ for\nother credit-related factors.32\n•\nA hiring tool that learned the features\
213
+ \ of a company's employees (predominantly men) rejected women appli­\ncants for\
214
+ \ spurious and discriminatory reasons; resumes with the word “women’s,” such as\
215
+ \ “women’s\nchess club captain,” were penalized in the candidate ranking.33\n\
216
+ •\nA predictive model marketed as being able to predict whether students are likely\
217
+ \ to drop out of school was"
218
+ - "on a principle of local control, such that those individuals closest to the data\
219
+ \ subject have more access while \nthose who are less proximate do not (e.g.,\
220
+ \ a teacher has access to their students’ daily progress data while a \nsuperintendent\
221
+ \ does not). \nReporting. In addition to the reporting on data privacy (as listed\
222
+ \ above for non-sensitive data), entities devel-\noping technologies related to\
223
+ \ a sensitive domain and those collecting, using, storing, or sharing sensitive\
224
+ \ data \nshould, whenever appropriate, regularly provide public reports describing:\
225
+ \ any data security lapses or breaches \nthat resulted in sensitive data leaks;\
226
+ \ the number, type, and outcomes of ethical pre-reviews undertaken; a \ndescription\
227
+ \ of any data sold, shared, or made public, and how that data was assessed to\
228
+ \ determine it did not pres-\nent a sensitive data risk; and ongoing risk identification\
229
+ \ and management procedures, and any mitigation added"
230
+ model-index:
231
+ - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
232
+ results:
233
+ - task:
234
+ type: information-retrieval
235
+ name: Information Retrieval
236
+ dataset:
237
+ name: Unknown
238
+ type: unknown
239
+ metrics:
240
+ - type: cosine_accuracy@1
241
+ value: 0.8881578947368421
242
+ name: Cosine Accuracy@1
243
+ - type: cosine_accuracy@3
244
+ value: 0.993421052631579
245
+ name: Cosine Accuracy@3
246
+ - type: cosine_accuracy@5
247
+ value: 0.993421052631579
248
+ name: Cosine Accuracy@5
249
+ - type: cosine_accuracy@10
250
+ value: 1.0
251
+ name: Cosine Accuracy@10
252
+ - type: cosine_precision@1
253
+ value: 0.8881578947368421
254
+ name: Cosine Precision@1
255
+ - type: cosine_precision@3
256
+ value: 0.331140350877193
257
+ name: Cosine Precision@3
258
+ - type: cosine_precision@5
259
+ value: 0.19868421052631577
260
+ name: Cosine Precision@5
261
+ - type: cosine_precision@10
262
+ value: 0.09999999999999999
263
+ name: Cosine Precision@10
264
+ - type: cosine_recall@1
265
+ value: 0.8881578947368421
266
+ name: Cosine Recall@1
267
+ - type: cosine_recall@3
268
+ value: 0.993421052631579
269
+ name: Cosine Recall@3
270
+ - type: cosine_recall@5
271
+ value: 0.993421052631579
272
+ name: Cosine Recall@5
273
+ - type: cosine_recall@10
274
+ value: 1.0
275
+ name: Cosine Recall@10
276
+ - type: cosine_ndcg@10
277
+ value: 0.9550417755482483
278
+ name: Cosine Ndcg@10
279
+ - type: cosine_mrr@10
280
+ value: 0.9395363408521302
281
+ name: Cosine Mrr@10
282
+ - type: cosine_map@100
283
+ value: 0.9395363408521302
284
+ name: Cosine Map@100
285
+ - type: dot_accuracy@1
286
+ value: 0.8881578947368421
287
+ name: Dot Accuracy@1
288
+ - type: dot_accuracy@3
289
+ value: 0.993421052631579
290
+ name: Dot Accuracy@3
291
+ - type: dot_accuracy@5
292
+ value: 0.993421052631579
293
+ name: Dot Accuracy@5
294
+ - type: dot_accuracy@10
295
+ value: 1.0
296
+ name: Dot Accuracy@10
297
+ - type: dot_precision@1
298
+ value: 0.8881578947368421
299
+ name: Dot Precision@1
300
+ - type: dot_precision@3
301
+ value: 0.331140350877193
302
+ name: Dot Precision@3
303
+ - type: dot_precision@5
304
+ value: 0.19868421052631577
305
+ name: Dot Precision@5
306
+ - type: dot_precision@10
307
+ value: 0.09999999999999999
308
+ name: Dot Precision@10
309
+ - type: dot_recall@1
310
+ value: 0.8881578947368421
311
+ name: Dot Recall@1
312
+ - type: dot_recall@3
313
+ value: 0.993421052631579
314
+ name: Dot Recall@3
315
+ - type: dot_recall@5
316
+ value: 0.993421052631579
317
+ name: Dot Recall@5
318
+ - type: dot_recall@10
319
+ value: 1.0
320
+ name: Dot Recall@10
321
+ - type: dot_ndcg@10
322
+ value: 0.9550417755482483
323
+ name: Dot Ndcg@10
324
+ - type: dot_mrr@10
325
+ value: 0.9395363408521302
326
+ name: Dot Mrr@10
327
+ - type: dot_map@100
328
+ value: 0.9395363408521302
329
+ name: Dot Map@100
330
+ ---
331
+
332
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
333
+
334
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
335
+
336
+ ## Model Details
337
+
338
+ ### Model Description
339
+ - **Model Type:** Sentence Transformer
340
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
341
+ - **Maximum Sequence Length:** 384 tokens
342
+ - **Output Dimensionality:** 768 tokens
343
+ - **Similarity Function:** Cosine Similarity
344
+ <!-- - **Training Dataset:** Unknown -->
345
+ <!-- - **Language:** Unknown -->
346
+ <!-- - **License:** Unknown -->
347
+
348
+ ### Model Sources
349
+
350
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
351
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
352
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
353
+
354
+ ### Full Model Architecture
355
+
356
+ ```
357
+ SentenceTransformer(
358
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
359
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
360
+ (2): Normalize()
361
+ )
362
+ ```
363
+
364
+ ## Usage
365
+
366
+ ### Direct Usage (Sentence Transformers)
367
+
368
+ First install the Sentence Transformers library:
369
+
370
+ ```bash
371
+ pip install -U sentence-transformers
372
+ ```
373
+
374
+ Then you can load this model and run inference.
375
+ ```python
376
+ from sentence_transformers import SentenceTransformer
377
+
378
+ # Download from the 🤗 Hub
379
+ model = SentenceTransformer("jet-taekyo/mpnet_finetuned_recursive")
380
+ # Run inference
381
+ sentences = [
382
+ 'What impact do automated systems have on underserved communities?',
383
+ "automated systems make on underserved communities and to institute proactive protections that support these \ncommunities. \n•\nAn automated system using nontraditional factors such as educational attainment and employment history as\npart of its loan underwriting and pricing model was found to be much more likely to charge an applicant who\nattended a Historically Black College or University (HBCU) higher loan prices for refinancing a student loan\nthan an applicant who did not attend an HBCU. This was found to be true even when controlling for\nother credit-related factors.32\n•\nA hiring tool that learned the features of a company's employees (predominantly men) rejected women appli\xad\ncants for spurious and discriminatory reasons; resumes with the word “women’s,” such as “women’s\nchess club captain,” were penalized in the candidate ranking.33\n•\nA predictive model marketed as being able to predict whether students are likely to drop out of school was",
384
+ 'on a principle of local control, such that those individuals closest to the data subject have more access while \nthose who are less proximate do not (e.g., a teacher has access to their students’ daily progress data while a \nsuperintendent does not). \nReporting. In addition to the reporting on data privacy (as listed above for non-sensitive data), entities devel-\noping technologies related to a sensitive domain and those collecting, using, storing, or sharing sensitive data \nshould, whenever appropriate, regularly provide public reports describing: any data security lapses or breaches \nthat resulted in sensitive data leaks; the number, type, and outcomes of ethical pre-reviews undertaken; a \ndescription of any data sold, shared, or made public, and how that data was assessed to determine it did not pres-\nent a sensitive data risk; and ongoing risk identification and management procedures, and any mitigation added',
385
+ ]
386
+ embeddings = model.encode(sentences)
387
+ print(embeddings.shape)
388
+ # [3, 768]
389
+
390
+ # Get the similarity scores for the embeddings
391
+ similarities = model.similarity(embeddings, embeddings)
392
+ print(similarities.shape)
393
+ # [3, 3]
394
+ ```
395
+
396
+ <!--
397
+ ### Direct Usage (Transformers)
398
+
399
+ <details><summary>Click to see the direct usage in Transformers</summary>
400
+
401
+ </details>
402
+ -->
403
+
404
+ <!--
405
+ ### Downstream Usage (Sentence Transformers)
406
+
407
+ You can finetune this model on your own dataset.
408
+
409
+ <details><summary>Click to expand</summary>
410
+
411
+ </details>
412
+ -->
413
+
414
+ <!--
415
+ ### Out-of-Scope Use
416
+
417
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
418
+ -->
419
+
420
+ ## Evaluation
421
+
422
+ ### Metrics
423
+
424
+ #### Information Retrieval
425
+
426
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
427
+
428
+ | Metric | Value |
429
+ |:--------------------|:-----------|
430
+ | cosine_accuracy@1 | 0.8882 |
431
+ | cosine_accuracy@3 | 0.9934 |
432
+ | cosine_accuracy@5 | 0.9934 |
433
+ | cosine_accuracy@10 | 1.0 |
434
+ | cosine_precision@1 | 0.8882 |
435
+ | cosine_precision@3 | 0.3311 |
436
+ | cosine_precision@5 | 0.1987 |
437
+ | cosine_precision@10 | 0.1 |
438
+ | cosine_recall@1 | 0.8882 |
439
+ | cosine_recall@3 | 0.9934 |
440
+ | cosine_recall@5 | 0.9934 |
441
+ | cosine_recall@10 | 1.0 |
442
+ | cosine_ndcg@10 | 0.955 |
443
+ | cosine_mrr@10 | 0.9395 |
444
+ | **cosine_map@100** | **0.9395** |
445
+ | dot_accuracy@1 | 0.8882 |
446
+ | dot_accuracy@3 | 0.9934 |
447
+ | dot_accuracy@5 | 0.9934 |
448
+ | dot_accuracy@10 | 1.0 |
449
+ | dot_precision@1 | 0.8882 |
450
+ | dot_precision@3 | 0.3311 |
451
+ | dot_precision@5 | 0.1987 |
452
+ | dot_precision@10 | 0.1 |
453
+ | dot_recall@1 | 0.8882 |
454
+ | dot_recall@3 | 0.9934 |
455
+ | dot_recall@5 | 0.9934 |
456
+ | dot_recall@10 | 1.0 |
457
+ | dot_ndcg@10 | 0.955 |
458
+ | dot_mrr@10 | 0.9395 |
459
+ | dot_map@100 | 0.9395 |
460
+
461
+ <!--
462
+ ## Bias, Risks and Limitations
463
+
464
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
465
+ -->
466
+
467
+ <!--
468
+ ### Recommendations
469
+
470
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
471
+ -->
472
+
473
+ ## Training Details
474
+
475
+ ### Training Dataset
476
+
477
+ #### Unnamed Dataset
478
+
479
+
480
+ * Size: 714 training samples
481
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
482
+ * Approximate statistics based on the first 714 samples:
483
+ | | sentence_0 | sentence_1 |
484
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
485
+ | type | string | string |
486
+ | details | <ul><li>min: 10 tokens</li><li>mean: 18.43 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 175.4 tokens</li><li>max: 384 tokens</li></ul> |
487
+ * Samples:
488
+ | sentence_0 | sentence_1 |
489
+ |:---------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
490
+ | <code>What information should designers and developers provide about automated systems to ensure transparency?</code> | <code>You should know that an automated system is being used, <br>and understand how and why it contributes to outcomes <br>that impact you. Designers, developers, and deployers of automat­<br>ed systems should provide generally accessible plain language docu­<br>mentation including clear descriptions of the overall system func­<br>tioning and the role automation plays, notice that such systems are in <br>use, the individual or organization responsible for the system, and ex­<br>planations of outcomes that are clear, timely, and accessible. Such <br>notice should be kept up-to-date and people impacted by the system <br>should be notified of significant use case or key functionality chang­<br>es. You should know how and why an outcome impacting you was de­<br>termined by an automated system, including when the automated <br>system is not the sole input determining the outcome. Automated <br>systems should provide explanations that are technically valid, <br>meaningful and useful to you and to any operators or others who</code> |
491
+ | <code>Why is it important for individuals impacted by automated systems to be notified of significant changes in functionality?</code> | <code>You should know that an automated system is being used, <br>and understand how and why it contributes to outcomes <br>that impact you. Designers, developers, and deployers of automat­<br>ed systems should provide generally accessible plain language docu­<br>mentation including clear descriptions of the overall system func­<br>tioning and the role automation plays, notice that such systems are in <br>use, the individual or organization responsible for the system, and ex­<br>planations of outcomes that are clear, timely, and accessible. Such <br>notice should be kept up-to-date and people impacted by the system <br>should be notified of significant use case or key functionality chang­<br>es. You should know how and why an outcome impacting you was de­<br>termined by an automated system, including when the automated <br>system is not the sole input determining the outcome. Automated <br>systems should provide explanations that are technically valid, <br>meaningful and useful to you and to any operators or others who</code> |
492
+ | <code>What specific technical questions does the questionnaire for evaluating software workers cover?</code> | <code>questionnaire that businesses can use proactively when procuring software to evaluate workers. It covers <br>specific technical questions such as the training data used, model training process, biases identified, and <br>mitigation steps employed.55 <br>Standards organizations have developed guidelines to incorporate accessibility criteria <br>into technology design processes. The most prevalent in the United States is the Access Board’s Section <br>508 regulations,56 which are the technical standards for federal information communication technology (software, <br>hardware, and web). Other standards include those issued by the International Organization for <br>Standardization,57 and the World Wide Web Consortium Web Content Accessibility Guidelines,58 a globally <br>recognized voluntary consensus standard for web content and other information and communications <br>technology. <br>NIST has released Special Publication 1270, Towards a Standard for Identifying and Managing Bias</code> |
493
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
494
+ ```json
495
+ {
496
+ "loss": "MultipleNegativesRankingLoss",
497
+ "matryoshka_dims": [
498
+ 768,
499
+ 512,
500
+ 256,
501
+ 128,
502
+ 64
503
+ ],
504
+ "matryoshka_weights": [
505
+ 1,
506
+ 1,
507
+ 1,
508
+ 1,
509
+ 1
510
+ ],
511
+ "n_dims_per_step": -1
512
+ }
513
+ ```
514
+
515
+ ### Training Hyperparameters
516
+ #### Non-Default Hyperparameters
517
+
518
+ - `eval_strategy`: steps
519
+ - `per_device_train_batch_size`: 20
520
+ - `per_device_eval_batch_size`: 20
521
+ - `num_train_epochs`: 5
522
+ - `multi_dataset_batch_sampler`: round_robin
523
+
524
+ #### All Hyperparameters
525
+ <details><summary>Click to expand</summary>
526
+
527
+ - `overwrite_output_dir`: False
528
+ - `do_predict`: False
529
+ - `eval_strategy`: steps
530
+ - `prediction_loss_only`: True
531
+ - `per_device_train_batch_size`: 20
532
+ - `per_device_eval_batch_size`: 20
533
+ - `per_gpu_train_batch_size`: None
534
+ - `per_gpu_eval_batch_size`: None
535
+ - `gradient_accumulation_steps`: 1
536
+ - `eval_accumulation_steps`: None
537
+ - `torch_empty_cache_steps`: None
538
+ - `learning_rate`: 5e-05
539
+ - `weight_decay`: 0.0
540
+ - `adam_beta1`: 0.9
541
+ - `adam_beta2`: 0.999
542
+ - `adam_epsilon`: 1e-08
543
+ - `max_grad_norm`: 1
544
+ - `num_train_epochs`: 5
545
+ - `max_steps`: -1
546
+ - `lr_scheduler_type`: linear
547
+ - `lr_scheduler_kwargs`: {}
548
+ - `warmup_ratio`: 0.0
549
+ - `warmup_steps`: 0
550
+ - `log_level`: passive
551
+ - `log_level_replica`: warning
552
+ - `log_on_each_node`: True
553
+ - `logging_nan_inf_filter`: True
554
+ - `save_safetensors`: True
555
+ - `save_on_each_node`: False
556
+ - `save_only_model`: False
557
+ - `restore_callback_states_from_checkpoint`: False
558
+ - `no_cuda`: False
559
+ - `use_cpu`: False
560
+ - `use_mps_device`: False
561
+ - `seed`: 42
562
+ - `data_seed`: None
563
+ - `jit_mode_eval`: False
564
+ - `use_ipex`: False
565
+ - `bf16`: False
566
+ - `fp16`: False
567
+ - `fp16_opt_level`: O1
568
+ - `half_precision_backend`: auto
569
+ - `bf16_full_eval`: False
570
+ - `fp16_full_eval`: False
571
+ - `tf32`: None
572
+ - `local_rank`: 0
573
+ - `ddp_backend`: None
574
+ - `tpu_num_cores`: None
575
+ - `tpu_metrics_debug`: False
576
+ - `debug`: []
577
+ - `dataloader_drop_last`: False
578
+ - `dataloader_num_workers`: 0
579
+ - `dataloader_prefetch_factor`: None
580
+ - `past_index`: -1
581
+ - `disable_tqdm`: False
582
+ - `remove_unused_columns`: True
583
+ - `label_names`: None
584
+ - `load_best_model_at_end`: False
585
+ - `ignore_data_skip`: False
586
+ - `fsdp`: []
587
+ - `fsdp_min_num_params`: 0
588
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
589
+ - `fsdp_transformer_layer_cls_to_wrap`: None
590
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
591
+ - `deepspeed`: None
592
+ - `label_smoothing_factor`: 0.0
593
+ - `optim`: adamw_torch
594
+ - `optim_args`: None
595
+ - `adafactor`: False
596
+ - `group_by_length`: False
597
+ - `length_column_name`: length
598
+ - `ddp_find_unused_parameters`: None
599
+ - `ddp_bucket_cap_mb`: None
600
+ - `ddp_broadcast_buffers`: False
601
+ - `dataloader_pin_memory`: True
602
+ - `dataloader_persistent_workers`: False
603
+ - `skip_memory_metrics`: True
604
+ - `use_legacy_prediction_loop`: False
605
+ - `push_to_hub`: False
606
+ - `resume_from_checkpoint`: None
607
+ - `hub_model_id`: None
608
+ - `hub_strategy`: every_save
609
+ - `hub_private_repo`: False
610
+ - `hub_always_push`: False
611
+ - `gradient_checkpointing`: False
612
+ - `gradient_checkpointing_kwargs`: None
613
+ - `include_inputs_for_metrics`: False
614
+ - `eval_do_concat_batches`: True
615
+ - `fp16_backend`: auto
616
+ - `push_to_hub_model_id`: None
617
+ - `push_to_hub_organization`: None
618
+ - `mp_parameters`:
619
+ - `auto_find_batch_size`: False
620
+ - `full_determinism`: False
621
+ - `torchdynamo`: None
622
+ - `ray_scope`: last
623
+ - `ddp_timeout`: 1800
624
+ - `torch_compile`: False
625
+ - `torch_compile_backend`: None
626
+ - `torch_compile_mode`: None
627
+ - `dispatch_batches`: None
628
+ - `split_batches`: None
629
+ - `include_tokens_per_second`: False
630
+ - `include_num_input_tokens_seen`: False
631
+ - `neftune_noise_alpha`: None
632
+ - `optim_target_modules`: None
633
+ - `batch_eval_metrics`: False
634
+ - `eval_on_start`: False
635
+ - `eval_use_gather_object`: False
636
+ - `batch_sampler`: batch_sampler
637
+ - `multi_dataset_batch_sampler`: round_robin
638
+
639
+ </details>
640
+
641
+ ### Training Logs
642
+ | Epoch | Step | cosine_map@100 |
643
+ |:-----:|:----:|:--------------:|
644
+ | 1.0 | 36 | 0.9395 |
645
+
646
+
647
+ ### Framework Versions
648
+ - Python: 3.11.9
649
+ - Sentence Transformers: 3.1.0
650
+ - Transformers: 4.44.2
651
+ - PyTorch: 2.4.1+cu121
652
+ - Accelerate: 0.34.2
653
+ - Datasets: 3.0.0
654
+ - Tokenizers: 0.19.1
655
+
656
+ ## Citation
657
+
658
+ ### BibTeX
659
+
660
+ #### Sentence Transformers
661
+ ```bibtex
662
+ @inproceedings{reimers-2019-sentence-bert,
663
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
664
+ author = "Reimers, Nils and Gurevych, Iryna",
665
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
666
+ month = "11",
667
+ year = "2019",
668
+ publisher = "Association for Computational Linguistics",
669
+ url = "https://arxiv.org/abs/1908.10084",
670
+ }
671
+ ```
672
+
673
+ #### MatryoshkaLoss
674
+ ```bibtex
675
+ @misc{kusupati2024matryoshka,
676
+ title={Matryoshka Representation Learning},
677
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
678
+ year={2024},
679
+ eprint={2205.13147},
680
+ archivePrefix={arXiv},
681
+ primaryClass={cs.LG}
682
+ }
683
+ ```
684
+
685
+ #### MultipleNegativesRankingLoss
686
+ ```bibtex
687
+ @misc{henderson2017efficient,
688
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
689
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
690
+ year={2017},
691
+ eprint={1705.00652},
692
+ archivePrefix={arXiv},
693
+ primaryClass={cs.CL}
694
+ }
695
+ ```
696
+
697
+ <!--
698
+ ## Glossary
699
+
700
+ *Clearly define terms in order to be accessible across audiences.*
701
+ -->
702
+
703
+ <!--
704
+ ## Model Card Authors
705
+
706
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
707
+ -->
708
+
709
+ <!--
710
+ ## Model Card Contact
711
+
712
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
713
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "finetuned_embeddings/mpnet_recursive",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53946dd9b136fe1fdcaf40f9ea310338675ddc50960b6a4dba3e73758c21bfb3
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 384,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff