File size: 2,072 Bytes
721d5f5
 
 
 
 
 
 
 
 
 
 
85ddb6e
721d5f5
 
 
 
 
 
 
 
 
85ddb6e
 
721d5f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85ddb6e
721d5f5
 
 
 
 
85ddb6e
 
721d5f5
 
 
 
85ddb6e
 
 
 
 
 
 
 
 
 
 
 
721d5f5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- formospeech/tat_asr_aligned
model-index:
- name: Whisper Tiny Taiwanese Condenser
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Taiwanese Condenser

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6252
- Cer: 11.4109

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 681
- training_steps: 6810
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.3117        | 0.9985 | 681  | 0.4649          | 17.1248 |
| 0.1805        | 1.9971 | 1362 | 0.4360          | 13.6667 |
| 0.108         | 2.9956 | 2043 | 0.4497          | 13.4248 |
| 0.0648        | 3.9941 | 2724 | 0.4710          | 12.8500 |
| 0.0349        | 4.9927 | 3405 | 0.5276          | 12.7592 |
| 0.0192        | 5.9912 | 4086 | 0.5607          | 12.4186 |
| 0.0089        | 6.9897 | 4767 | 0.5911          | 12.1183 |
| 0.0035        | 7.9883 | 5448 | 0.6032          | 11.6608 |
| 0.0009        | 8.9868 | 6129 | 0.6198          | 11.5311 |
| 0.0005        | 9.9853 | 6810 | 0.6252          | 11.4109 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1