File size: 2,362 Bytes
5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 5ef2b59 65e4038 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: jetmoe/jetmoe-8b-sft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: jetmoe-8b-chat
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# jetmoe-8b-chat
This model is a fine-tuned version of [jetmoe-8b-sft](https://huggingface.co/jetmoe/jetmoe-8b-sft) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6372
- Rewards/chosen: -0.0901
- Rewards/rejected: -0.2250
- Rewards/accuracies: 0.7148
- Rewards/margins: 0.1349
- Logps/rejected: -289.3396
- Logps/chosen: -286.2378
- Logits/rejected: -2.9020
- Logits/chosen: -2.9443
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6664 | 0.42 | 200 | 0.6622 | -0.0185 | -0.0869 | 0.6997 | 0.0684 | -275.5274 | -279.0778 | -2.9127 | -2.9572 |
| 0.6428 | 0.84 | 400 | 0.6372 | -0.0901 | -0.2250 | 0.7148 | 0.1349 | -289.3396 | -286.2378 | -2.9020 | -2.9443 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2
|