YikangS commited on
Commit
2601c58
·
1 Parent(s): fc3c6a0

update readme

Browse files
README.md CHANGED
@@ -1,15 +1,68 @@
1
- # JetMoE-8B-chat: Efficient and High-Performance LLM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- Welcome to the official repository of JetMoE-8B-chat, a language model that combines cost-efficiency with high performance, making state-of-the-art language modeling accessible to a broader audience, including academia and small-scale industry players.
 
 
 
 
4
 
5
- ## Key Highlights
6
 
7
- - **Cost-Effective Training**: Achieved at less than $0.1 million, JetMoE-8B significantly lowers the barrier to entry for training large language models (LLMs), demonstrating that high-quality LLM training can be far more economical than widely assumed.
8
- - **Academia-Friendly**: By relying exclusively on public datasets and open-sourcing our code, JetMoE-8B is highly accessible for educational and research purposes. It is designed to be fine-tuned even on consumer-grade GPUs, making it feasible for most academic labs.
9
- - **Efficiency at Scale**: With only 2.2B active parameters during inference, JetMoE-8B provides an optimal balance between computational cost and performance, outperforming similarly sized models such as Gemma-2B across various benchmarks.
10
- - **Good Performence** JetMoE-8B-chat has been evaluated using the MT-Bench, surpassing Llama-2-13b-chat and Vicuna-13b-v1.3. Here is how JetMoE-8B-chat compares with other models:
11
 
12
- | Model | Score |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  |---------------------|-----------|
14
  | GPT-4 | 9.014 |
15
  | GPT-3.5-turbo | 7.995 |
@@ -21,9 +74,10 @@ Welcome to the official repository of JetMoE-8B-chat, a language model that comb
21
  | Llama-2-7b-chat | 6.269 |
22
 
23
 
24
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/638e4e66629b4d0a62ce1bf3/VU0f0E-CKmMHs-PVE-8dZ.png)
25
 
26
- ### Usage
 
 
27
 
28
  Here's a quick example to get you started with JetMoE-8B-chat:
29
 
@@ -61,4 +115,41 @@ if torch.cuda.is_available():
61
  # Decode the generated text
62
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
63
  print(generated_text)
64
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: jetmoe/jetmoe-8b
4
+ tags:
5
+ - alignment-handbook
6
+ - generated_from_trainer
7
+ datasets:
8
+ - HuggingFaceH4/ultrachat_200k
9
+ - HuggingFaceH4/airoboros-3.2
10
+ - HuggingFaceH4/Code-Feedback
11
+ - HuggingFaceH4/orca-math-word-problems-200k
12
+ - HuggingFaceH4/SystemChat
13
+ - HuggingFaceH4/capybara
14
+ model-index:
15
+ - name: jetmoe-8b-sft
16
+ results: []
17
+ ---
18
 
19
+ <div align="center">
20
+ <div>&nbsp;</div>
21
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/641de0213239b631552713e4/ieHnwuczidNNoGRA_FN2y.png" width="500"/>
22
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/641de0213239b631552713e4/UOsk9_zcbHpCCy6kmryYM.png" width="530"/>
23
+ </div>
24
 
25
+ # JetMoE: Reaching LLaMA2 Performance with 0.1M Dollars
26
 
27
+ ## Key Messages
 
 
 
28
 
29
+ 1. JetMoE-8B is **trained with less than $ 0.1 million**<sup>1</sup> **cost but outperforms LLaMA2-7B from Meta AI**, who has multi-billion-dollar training resources. LLM training can be **much cheaper than people previously thought**.
30
+
31
+ 2. JetMoE-8B is **fully open-sourced and academia-friendly** because:
32
+ - It **only uses public datasets** for training, and the code is open-sourced. No proprietary resource is needed.
33
+ - It **can be finetuned with very limited compute budget** (e.g., consumer-grade GPU) that most labs can afford.
34
+
35
+ 3. JetMoE-8B **only has 2.2B active parameters** during inference, which drastically lowers the computational cost. Compared to a model with similar inference computation, like Gemma-2B, JetMoE-8B achieves constantly better performance.
36
+
37
+ <sup>1</sup> We used a 96×H100 GPU cluster for 2 weeks, which cost ~$0.08 million.
38
+
39
+ Website: [https://research.myshell.ai/jetmoe](https://research.myshell.ai/jetmoe)
40
+
41
+ HuggingFace: [https://huggingface.co/jetmoe/jetmoe-8b](https://huggingface.co/jetmoe/jetmoe-8b)
42
+
43
+ Online Demo on Lepton AI: [https://www.lepton.ai/playground/chat?model=jetmoe-8b-chat](https://www.lepton.ai/playground/chat?model=jetmoe-8b-chat)
44
+
45
+ ## Authors
46
+
47
+ The project is contributed by [Yikang Shen](https://scholar.google.com.hk/citations?user=qff5rRYAAAAJ), [Zhen Guo](https://zguo0525.github.io/), [Tianle Cai](https://www.tianle.website/#/) and [Zengyi Qin](https://www.qinzy.tech/). For technical inquiries, please contact [Yikang Shen](https://scholar.google.com.hk/citations?user=qff5rRYAAAAJ). For media and collaboration inquiries, please contact [Zengyi Qin](https://www.qinzy.tech/).
48
+
49
+ ## Collaboration
50
+ **If you have great ideas but need more resources (GPU, data, funding, etc.)**, welcome to contact **MyShell.ai** via [Zengyi Qin](https://www.qinzy.tech/). **MyShell.ai** is open to collaborations and are actively supporting high-quality open-source projects.
51
+
52
+ ## Benchmarks
53
+ We use the same evaluation methodology as in the Open LLM leaderboard. For MBPP code benchmark, we use the same evaluation methodology as in the LLaMA2 and Deepseek-MoE paper. The results are shown below:
54
+
55
+ |Model|Activate Params|Training Tokens|Open LLM Leaderboard Avg|ARC|Hellaswag|MMLU|TruthfulQA|WinoGrande|GSM8k|MBPP|HumanEval|
56
+ |---|---|---|---|---|---|---|---|---|---|---|---|
57
+ |Shot||||25|10|5|0|5|5|3|0|
58
+ |Metric||||acc_norm|acc_norm|acc|mc2|acc|acc|Pass@1|Pass@1|
59
+ |LLaMA2-7B|7B|2T|51.0|53.1|78.6|46.9|38.8|74|14.5|20.8|12.8|
60
+ |LLaMA-13B|13B|1T|51.4|**56.2**|**80.9**|47.7|39.5|**76.2**|7.6|22.0|15.8|
61
+ |DeepseekMoE-16B|2.8B|2T|51.1|53.2|79.8|46.3|36.1|73.7|17.3|34.0|**25.0**|
62
+ |Gemma-2B|2B|2T|46.4|48.4|71.8|41.8|33.1|66.3|16.9|28.0|24.4|
63
+ |JetMoE-8B|2.2B|1.25T|**53.0**|48.7|80.5|**49.2**|**41.7**|70.2|**27.8**|**34.2**|14.6|
64
+
65
+ | Model | MT-Bench Score |
66
  |---------------------|-----------|
67
  | GPT-4 | 9.014 |
68
  | GPT-3.5-turbo | 7.995 |
 
74
  | Llama-2-7b-chat | 6.269 |
75
 
76
 
 
77
 
78
+ To our surprise, despite the lower training cost and computation, JetMoE-8B performs even better than LLaMA2-7B, LLaMA-13B, and DeepseekMoE-16B. Compared to a model with similar training and inference computation, like Gemma-2B, JetMoE-8B achieves better performance.
79
+
80
+ ## Model Usage
81
 
82
  Here's a quick example to get you started with JetMoE-8B-chat:
83
 
 
115
  # Decode the generated text
116
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
117
  print(generated_text)
118
+ ```
119
+
120
+ ## Model Details
121
+ JetMoE-8B has 24 blocks.
122
+ Each block has two MoE layers: Mixture of Attention heads (MoA) and Mixture of MLP Experts (MoE).
123
+ Each MoA and MoE layer has 8 expert, and 2 experts are activated for each input token.
124
+ It has 8 billion parameters in total and 2.2B active parameters.
125
+ JetMoE-8B is trained on 1.25T tokens from publicly available datasets, with a learning rate of 5.0 x 10<sup>-4</sup> and a global batch-size of 4M tokens.
126
+
127
+ <figure>
128
+ <center>
129
+ <img src="images/jetmoe_architecture.png" width="40%">
130
+ <figcaption>JetMoE Architecture</figcaption>
131
+ </center>
132
+ </figure>
133
+
134
+ ## Training Details
135
+ Our training recipe follows the [MiniCPM](https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20?pvs=4)'s two-phases training method. Phase 1 uses a constant learning rate with linear warmup and is trained on 1 trillion tokens from large-scale open-source pretraining datasets, including RefinedWeb, Pile, Github data, etc. Phase 2 uses exponential learning rate decay and is trained on 250 billion tokens from phase 1 datasets and extra high-quality open-source datasets.
136
+
137
+ <figure>
138
+ <center>
139
+ <img src="images/Phase1_data.png" width="60%">
140
+ <img src="images/Phase2_data.png" width="60%">
141
+ </center>
142
+ </figure>
143
+
144
+ ## Technical Report
145
+ For more details, please refer to the JetMoE Technical Report (Coming Soon).
146
+
147
+ ## JetMoE Model Index
148
+ |Model|Index|
149
+ |---|---|
150
+ |JetMoE-8B-Base| [Link](https://huggingface.co/jetmoe/jetmoe-8B) |
151
+ |JetMoE-8B-SFT| [Link](https://huggingface.co/jetmoe/jetmoe-8B-sft) |
152
+ |JetMoE-8B-Chat| [Link](https://huggingface.co/jetmoe/jetmoe-8B-chat) |
153
+
154
+ ## Acknowledgement
155
+ We express our gratitude to [Shengding Hu](https://shengdinghu.github.io/) for his valuable advice on the Phase 2 data mixture. We also express our gratitude to [Exabits](https://www.exabits.ai/) for their assistance in setting up the GPU clusters, and to [Lepton AI](https://www.lepton.ai/) for their support in setting up the chat demo.
config.json CHANGED
@@ -1,92 +1,30 @@
1
  {
2
- "_attn_implementation_internal": "eager",
3
- "_commit_hash": "e4d9ef770a272f072cac70d16dd1ae113f5989ae",
4
  "_name_or_path": "jetmoe/jetmoe-8b-chat",
 
5
  "activation_function": "silu",
6
- "add_cross_attention": false,
7
  "architectures": [
8
  "JetMoEForCausalLM"
9
  ],
10
- "auto_map": {
11
- "AutoConfig": "configuration_jetmoe.JetMoEConfig",
12
- "AutoModelForCausalLM": "modeling_jetmoe.JetMoEForCausalLM"
13
- },
14
- "aux_loss_coef": 0.01,
15
- "bad_words_ids": null,
16
- "begin_suppress_tokens": null,
17
- "bias": true,
18
  "bos_token_id": 1,
19
- "chunk_size_feed_forward": 0,
20
- "cross_attention_hidden_size": null,
21
- "decoder_start_token_id": null,
22
- "diversity_penalty": 0.0,
23
- "do_sample": false,
24
- "early_stopping": false,
25
- "encoder_no_repeat_ngram_size": 0,
26
  "eos_token_id": 2,
27
- "exponential_decay_length_penalty": null,
28
  "ffn_hidden_size": 5632,
29
- "finetuning_task": null,
30
- "forced_bos_token_id": null,
31
- "forced_eos_token_id": null,
32
- "glu": true,
33
- "id2label": {
34
- "0": "LABEL_0",
35
- "1": "LABEL_1"
36
- },
37
- "initializer_range": 0.01,
38
- "is_decoder": false,
39
- "is_encoder_decoder": false,
40
  "kv_channels": 128,
41
- "label2id": {
42
- "LABEL_0": 0,
43
- "LABEL_1": 1
44
- },
45
  "layer_norm_epsilon": 1e-05,
46
  "length_penalty": 1.0,
47
- "max_length": 20,
48
- "min_length": 0,
49
- "model_type": "jetmoe",
50
  "moe_num_experts": 8,
51
  "moe_top_k": 2,
52
- "n_embd": 2048,
53
- "n_head": 16,
54
- "n_layer": 24,
55
  "n_positions": 4096,
56
- "no_repeat_ngram_size": 0,
57
- "num_beam_groups": 1,
58
- "num_beams": 1,
59
  "num_key_value_heads": 16,
60
  "num_layers": 24,
61
- "num_return_sequences": 1,
62
- "output_attentions": false,
63
- "output_hidden_states": false,
64
- "output_scores": false,
65
- "pad_token_id": null,
66
- "prefix": null,
67
- "problem_type": null,
68
- "pruned_heads": {},
69
- "remove_invalid_values": false,
70
- "repetition_penalty": 1.0,
71
- "return_dict": true,
72
- "return_dict_in_generate": false,
73
  "rms_norm_eps": 1e-05,
74
  "rope_theta": 10000.0,
75
  "rotary_percent": 1.0,
76
- "sep_token_id": null,
77
- "suppress_tokens": null,
78
- "task_specific_params": null,
79
- "temperature": 1.0,
80
- "tf_legacy_loss": false,
81
- "tie_encoder_decoder": false,
82
  "tie_word_embeddings": true,
83
- "tokenizer_class": null,
84
- "top_k": 50,
85
- "top_p": 1.0,
86
- "torchscript": false,
87
  "transformers_version": null,
88
- "typical_p": 1.0,
89
- "use_bfloat16": false,
90
  "use_cache": true,
91
- "vocab_size": 32000
92
- }
 
 
1
  {
 
 
2
  "_name_or_path": "jetmoe/jetmoe-8b-chat",
3
+ "model_type": "jetmoe",
4
  "activation_function": "silu",
 
5
  "architectures": [
6
  "JetMoEForCausalLM"
7
  ],
 
 
 
 
 
 
 
 
8
  "bos_token_id": 1,
 
 
 
 
 
 
 
9
  "eos_token_id": 2,
 
10
  "ffn_hidden_size": 5632,
 
 
 
 
 
 
 
 
 
 
 
11
  "kv_channels": 128,
 
 
 
 
12
  "layer_norm_epsilon": 1e-05,
13
  "length_penalty": 1.0,
 
 
 
14
  "moe_num_experts": 8,
15
  "moe_top_k": 2,
16
+ "hidden_size": 2048,
17
+ "num_hidden_layers": 24,
 
18
  "n_positions": 4096,
19
+ "num_attention_heads": 32,
 
 
20
  "num_key_value_heads": 16,
21
  "num_layers": 24,
 
 
 
 
 
 
 
 
 
 
 
 
22
  "rms_norm_eps": 1e-05,
23
  "rope_theta": 10000.0,
24
  "rotary_percent": 1.0,
 
 
 
 
 
 
25
  "tie_word_embeddings": true,
 
 
 
 
26
  "transformers_version": null,
 
 
27
  "use_cache": true,
28
+ "vocab_size": 32000,
29
+ "glu": true
30
+ }
images/Phase1_data.png ADDED
images/Phase2_data.png ADDED
images/jetmoe_architecture.png ADDED