---
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- text-classification
model_format: pickle
model_file: skops-4dusypwz.pkl
---
# Model description
This is a `RandomForestClassifier` model trained on JeVeuxAider dataset. As input, the model takes text embeddings encoded with camembert-base (768 tokens)
## Intended uses & limitations
This model is not ready to be used in production.
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
Click to expand
| Hyperparameter | Value |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('scaler', StandardScaler()), ('pca', PCA(n_components=374)), ('rfc', RandomForestClassifier(class_weight='balanced', random_state=42))] |
| verbose | False |
| scaler | StandardScaler() |
| pca | PCA(n_components=374) |
| rfc | RandomForestClassifier(class_weight='balanced', random_state=42) |
| scaler__copy | True |
| scaler__with_mean | True |
| scaler__with_std | True |
| pca__copy | True |
| pca__iterated_power | auto |
| pca__n_components | 374 |
| pca__n_oversamples | 10 |
| pca__power_iteration_normalizer | auto |
| pca__random_state | |
| pca__svd_solver | auto |
| pca__tol | 0.0 |
| pca__whiten | False |
| rfc__bootstrap | True |
| rfc__ccp_alpha | 0.0 |
| rfc__class_weight | balanced |
| rfc__criterion | gini |
| rfc__max_depth | |
| rfc__max_features | sqrt |
| rfc__max_leaf_nodes | |
| rfc__max_samples | |
| rfc__min_impurity_decrease | 0.0 |
| rfc__min_samples_leaf | 1 |
| rfc__min_samples_split | 2 |
| rfc__min_weight_fraction_leaf | 0.0 |
| rfc__n_estimators | 100 |
| rfc__n_jobs | |
| rfc__oob_score | False |
| rfc__random_state | 42 |
| rfc__verbose | 0 |
| rfc__warm_start | False |
Pipeline(steps=[('scaler', StandardScaler()), ('pca', PCA(n_components=374)),('rfc',RandomForestClassifier(class_weight='balanced',random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('scaler', StandardScaler()), ('pca', PCA(n_components=374)),('rfc',RandomForestClassifier(class_weight='balanced',random_state=42))])
StandardScaler()
PCA(n_components=374)
RandomForestClassifier(class_weight='balanced', random_state=42)