Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-6.zip +3 -0
- ppo-LunarLander-v2-6/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-6/data +94 -0
- ppo-LunarLander-v2-6/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-6/policy.pth +3 -0
- ppo-LunarLander-v2-6/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-6/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 270.92 +/- 11.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19bed3c820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19bed3c8b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19bed3c940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19bed3c9d0>", "_build": "<function ActorCriticPolicy._build at 0x7f19bed3ca60>", "forward": "<function ActorCriticPolicy.forward at 0x7f19bed3caf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19bed3cb80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19bed3cc10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19bed3cca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19bed3cd30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19bed3cdc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19bed2fd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2555904, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670524830897561261, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAD7KT72Hh0/6CYtvnuZ375/kM89lRLgvQAAAAAAAAAAzTCOvD7buj+ZeY2+W4mXPng4Nzw6U7m8AAAAAAAAAACAs1a9fB+OPtIViz5Fhr6+5YYdPsu7jj0AAAAAAAAAAJop4Ttp/lC8UGpRPqBCXbxFdMm9rIo0vQAAgD8AAIA/M5CxvPIj1T6EKcg9vo6Yvsjc7rvmuQO9AAAAAAAAAACa1rY8CgQfu9v6g7ti2088ygNWPN4qNr0AAIA/AACAP5rB/rwV9GI/Lv3SubDJy76uVS29iQYFvQAAAAAAAAAAZgZQvBcsbz6wJP886pKdvoXosLxdjWU8AAAAAAAAAAAz2zy87IGLP0Mykr0aW9i+YhPmPEAFFj0AAAAAAAAAAE1Ug71xPV23ZYsiuBx/krPQkNq6L49BNwAAgD8AAIA/gPhEvd2YFT+/OCi9YTa+vlVBNb22kWO9AAAAAAAAAADN2O+7T7EavJ078zzzPtA7wyCLvbalujwAAIA/AACAP2ar2L2UgpQ+sAoMPmTnir5PaaO8bSkfPAAAAAAAAAAApqS1veyJ+bkISVG5Va6ZM1abLTnVgHU4AACAPwAAgD9adIg9PS56u/YfFrwvf4Q8862yvKPmYz0AAIA/AACAP4CaEL3I65Q9likFPt+Vrr7YVCC9jF+jPQAAAAAAAAAAhr8YviGTez+dVni+p9PHviK5Zb4m+a29AAAAAAAAAADmZTI91SqDP4IZBz0toca+h75MPQbaKj0AAAAAAAAAAKZZmb2ugYO6Ueq5ugKD3bXac9k6m87YOQAAAAAAAAAAIIkSPsj6hD44FGC+EyGUviCfhb2iaWe9AAAAAAAAAADNPN48EB/PPrz6pT2OgKC+itKVvJGxnTwAAAAAAAAAAOb1d72gZ6c/0ZuTviQZub51I6O9ltI0vgAAAAAAAAAAAIAAOZ+zirtwnwu91u5cvmsxvjymjZQ/AACAPwAAgD9mraY8KQaBP9ZprLzxC7K+R+/euxPzg70AAAAAAAAAAA1Cjj6E6FQ/hziAPa3V+r6k8qQ+2eYAvgAAAAAAAAAAAMgKPAAOpj7SXOO9vpySvktKhb2I7Ri+AAAAAAAAAACaIay819lJPt6jGD7sCbG+tnnkPTUAk70AAAAAAAAAADOt4LzhsIi60i8KO4xDTTms4nk46m+huQAAgD8AAIA/4JlJvi9W/j5ifjE+VsezvqfSvb023z49AAAAAAAAAAAgK4e+spDhPnZrez6/H7e+f3x5vQJX5j0AAAAAAAAAAM3ikjxD8Ri8ksMXvZThzTzABX49Xs2ovQAAgD8AAIA/TY66PXsipbpegzg5tUMrNPGLBrpqJVS4AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02236159999999998, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIERrBxjWCcUCUhpRSlIwBbJRL64wBdJRHQKFcMywfQrt1fZQoaAZoCWgPQwih2Aqa1mdzQJSGlFKUaBVL7GgWR0ChXGubI91VdX2UKGgGaAloD0MIEW4yqgywbkCUhpRSlGgVS+poFkdAoVxyMUAT7HV9lChoBmgJaA9DCC7kEdzINHBAlIaUUpRoFUvlaBZHQKFccRKYiPh1fZQoaAZoCWgPQwjt8UI6fPhwQJSGlFKUaBVL/WgWR0ChXQYtg8bJdX2UKGgGaAloD0MIyF7v/njUbECUhpRSlGgVS+hoFkdAoV0xLZi/f3V9lChoBmgJaA9DCEt2bARiz3BAlIaUUpRoFUv0aBZHQKFdOPlMh5h1fZQoaAZoCWgPQwgicY+lD7VwQJSGlFKUaBVL72gWR0ChXVWbXpW4dX2UKGgGaAloD0MIgxd9BSmic0CUhpRSlGgVTVkCaBZHQKFdao86mwd1fZQoaAZoCWgPQwio4zEDFYBvQJSGlFKUaBVL4GgWR0ChXXbvPToddX2UKGgGaAloD0MI4KKTpVZ+cECUhpRSlGgVTRYBaBZHQKFdkY1pCa91fZQoaAZoCWgPQwgQzNHjd2txQJSGlFKUaBVL5WgWR0ChXhGAbyYpdX2UKGgGaAloD0MIHeihto2hcUCUhpRSlGgVS/NoFkdAoV4uorFwUHV9lChoBmgJaA9DCLh1N091TW9AlIaUUpRoFU0BAWgWR0ChXrkZ75VPdX2UKGgGaAloD0MIaLEUydchcECUhpRSlGgVS/toFkdAoV83fEXLvHV9lChoBmgJaA9DCB9pcFsbK3FAlIaUUpRoFUv4aBZHQKFfSnpjc211fZQoaAZoCWgPQwgLQnkfh6ZwQJSGlFKUaBVL92gWR0ChX2DDbah6dX2UKGgGaAloD0MI6+QMxZ19cECUhpRSlGgVS+ZoFkdAoV95CF9KEnV9lChoBmgJaA9DCA0YJH2aDXFAlIaUUpRoFU0qAWgWR0ChX47o8p1BdX2UKGgGaAloD0MIck7sof1lcUCUhpRSlGgVS+poFkdAoV/Pg9/z8XV9lChoBmgJaA9DCCFblq/LhnJAlIaUUpRoFUvvaBZHQKFf6iSJTER1fZQoaAZoCWgPQwixFMlXgvtvQJSGlFKUaBVNAAFoFkdAoWAOJtSAH3V9lChoBmgJaA9DCFVntcCeV3BAlIaUUpRoFU0CAWgWR0ChYB9YwIt2dX2UKGgGaAloD0MIjdMQVfjocUCUhpRSlGgVS/ZoFkdAoWCMCq6vq3V9lChoBmgJaA9DCEGasWg6qnJAlIaUUpRoFU0JAWgWR0ChYL5dOZb7dX2UKGgGaAloD0MI61OOyeJpckCUhpRSlGgVTR0BaBZHQKFg0+dsi0R1fZQoaAZoCWgPQwiJCP8iKBJwQJSGlFKUaBVNHQFoFkdAoWDhuVHFxXV9lChoBmgJaA9DCJazd0ab+XFAlIaUUpRoFUvgaBZHQKFhMx3V0911fZQoaAZoCWgPQwg1071Oqh5wQJSGlFKUaBVNPAFoFkdAoWE9N34bj3V9lChoBmgJaA9DCJxNRwD3P3JAlIaUUpRoFU0DAWgWR0ChYX0DEFW5dX2UKGgGaAloD0MIC5dV2Ay5cUCUhpRSlGgVS+JoFkdAoWGVt0mtyXV9lChoBmgJaA9DCGtKsg6HVHBAlIaUUpRoFUvxaBZHQKFhtjvNNah1fZQoaAZoCWgPQwhUkJ+NHOxyQJSGlFKUaBVL62gWR0ChYdAlOXVtdX2UKGgGaAloD0MICMpt+56bcECUhpRSlGgVTTkBaBZHQKFid0HyEtd1fZQoaAZoCWgPQwhzZOWXARZyQJSGlFKUaBVNEAFoFkdAoWKsQ5FPSHV9lChoBmgJaA9DCKotdZCXZHFAlIaUUpRoFUvgaBZHQKFiufqX4TN1fZQoaAZoCWgPQwjk9WBS/BluQJSGlFKUaBVL/mgWR0ChYwXaSLZSdX2UKGgGaAloD0MIqJAr9azncUCUhpRSlGgVS/5oFkdAoWMr6FdsznV9lChoBmgJaA9DCARXeQLhxHFAlIaUUpRoFU0AAWgWR0ChY1uNo8ISdX2UKGgGaAloD0MIgIEgQEYwcUCUhpRSlGgVTRsBaBZHQKFj9OerdWR1fZQoaAZoCWgPQwgnaJPD59dwQJSGlFKUaBVNLAFoFkdAoWP0ZpBX0XV9lChoBmgJaA9DCDZWYp6VaHNAlIaUUpRoFU0lAWgWR0ChZAAyuZCwdX2UKGgGaAloD0MIt18+WfHHcUCUhpRSlGgVTRYBaBZHQKFkl/4qPOp1fZQoaAZoCWgPQwgE5Euo4HJvQJSGlFKUaBVNAwFoFkdAoWTDel9Br3V9lChoBmgJaA9DCP6Y1qbxFXBAlIaUUpRoFUvoaBZHQKFky+mFajh1fZQoaAZoCWgPQwiDMLd7uRptQJSGlFKUaBVL5WgWR0ChZNKEeyRkdX2UKGgGaAloD0MIIZIhx9bDRUCUhpRSlGgVS8FoFkdAoWUTmdRR/HV9lChoBmgJaA9DCNNnB1zX1m5AlIaUUpRoFU0pAWgWR0ChZSitihFmdX2UKGgGaAloD0MIrFPle8ZQcUCUhpRSlGgVS/1oFkdAoWUzLhaTwHV9lChoBmgJaA9DCKNAn8iTCnFAlIaUUpRoFU0TAWgWR0ChZaO+yquKdX2UKGgGaAloD0MIU7ExryNPcUCUhpRSlGgVS/doFkdAoWWzAP/aQHV9lChoBmgJaA9DCKSNI9aiIXJAlIaUUpRoFU0IAWgWR0ChZbn80k4WdX2UKGgGaAloD0MIAwgfSrQEckCUhpRSlGgVS/NoFkdAoWW+5lOGkHV9lChoBmgJaA9DCIzc09XdgHBAlIaUUpRoFU0OAWgWR0ChZhbayrxRdX2UKGgGaAloD0MIBwySPi1qckCUhpRSlGgVS+loFkdAoWY+mR/3FnV9lChoBmgJaA9DCMnIWdhThHJAlIaUUpRoFU0KAWgWR0ChZkox59mZdX2UKGgGaAloD0MIPUZ55uX5cUCUhpRSlGgVS+VoFkdAoWaCCHymRHV9lChoBmgJaA9DCDlCBvKsznNAlIaUUpRoFUv6aBZHQKFmiWAwwkB1fZQoaAZoCWgPQwiWQbXBSbxwQJSGlFKUaBVL+mgWR0ChZqpudf9hdX2UKGgGaAloD0MIYymSrwQ8cECUhpRSlGgVS9hoFkdAoWbR19v0iHV9lChoBmgJaA9DCBQktrvHgnBAlIaUUpRoFUvdaBZHQKFm1FvQ4S91fZQoaAZoCWgPQwg58dWOYk9yQJSGlFKUaBVL9WgWR0ChZxor4FibdX2UKGgGaAloD0MIdsHgmruJbkCUhpRSlGgVTQsBaBZHQKFnUsXBP9F1fZQoaAZoCWgPQwgtXcE2YjJxQJSGlFKUaBVL8GgWR0ChZ9yaEzwddX2UKGgGaAloD0MIc7uX++SNbkCUhpRSlGgVS+1oFkdAoWgAk7fYSXV9lChoBmgJaA9DCHv5nSaz5nJAlIaUUpRoFU0eAWgWR0ChaAxW1c+rdX2UKGgGaAloD0MI2nQEcDMlcUCUhpRSlGgVS+9oFkdAoWi85lvqDHV9lChoBmgJaA9DCEH0pEzq0m1AlIaUUpRoFUv4aBZHQKFowkIHC411fZQoaAZoCWgPQwh/iXjr/A9wQJSGlFKUaBVNAgFoFkdAoWjYUWVNYnV9lChoBmgJaA9DCMug2uCED3BAlIaUUpRoFU0QAWgWR0ChaN3IuGsWdX2UKGgGaAloD0MI1UDzOfe7cECUhpRSlGgVS9xoFkdAoWjd3t8eCHV9lChoBmgJaA9DCPutnSgJaXFAlIaUUpRoFUvRaBZHQKFpZNW2gFp1fZQoaAZoCWgPQwgp6WFo9SllQJSGlFKUaBVN6ANoFkdAoWmp7sv7FnV9lChoBmgJaA9DCAWlaOVefDVAlIaUUpRoFUu4aBZHQKFptc9GI9F1fZQoaAZoCWgPQwgykGeXLzFyQJSGlFKUaBVL9GgWR0ChajjDbah6dX2UKGgGaAloD0MIKChFK3dVcUCUhpRSlGgVS/xoFkdAoWo4GB4D93V9lChoBmgJaA9DCLX+lgA8EHJAlIaUUpRoFU0ZAWgWR0Chak0ngHeKdX2UKGgGaAloD0MIuw7VlKSxc0CUhpRSlGgVTRgBaBZHQKFqT69kBjp1fZQoaAZoCWgPQwgw1GGFGyRwQJSGlFKUaBVL12gWR0ChamSup0fYdX2UKGgGaAloD0MIy5wui4ksckCUhpRSlGgVS+xoFkdAoWpnJJXhfnV9lChoBmgJaA9DCITWw5fJA3BAlIaUUpRoFUv3aBZHQKFqsLrHEMt1fZQoaAZoCWgPQwhPJJhqZkhyQJSGlFKUaBVL6WgWR0ChauizkZJkdX2UKGgGaAloD0MI2CjrNxO8b0CUhpRSlGgVS+BoFkdAoWsYggX/HnV9lChoBmgJaA9DCJ3y6EYYO3JAlIaUUpRoFU0SAWgWR0ChazTxG2CvdX2UKGgGaAloD0MIjsu4qUEackCUhpRSlGgVS/poFkdAoWtIZwXIl3V9lChoBmgJaA9DCEbvVMC9cW5AlIaUUpRoFUvwaBZHQKFrlqoqCpZ1fZQoaAZoCWgPQwh9Wdqpuc9xQJSGlFKUaBVL5WgWR0Cha8TK9wm3dX2UKGgGaAloD0MIj4r/O6K6cECUhpRSlGgVS+ZoFkdAoWv2SOinHnV9lChoBmgJaA9DCBKDwMphZXFAlIaUUpRoFUv4aBZHQKFsB9F4LTh1fZQoaAZoCWgPQwgs1nCR+/FwQJSGlFKUaBVNBQFoFkdAoWwX/3nIQ3V9lChoBmgJaA9DCK3e4XZoJHJAlIaUUpRoFUv5aBZHQKFsWSr5qM51fZQoaAZoCWgPQwiQh767Fc1yQJSGlFKUaBVL6GgWR0ChbIVkc0cfdX2UKGgGaAloD0MIKpDZWfSVbUCUhpRSlGgVS/xoFkdAoWy3+S8rZ3V9lChoBmgJaA9DCEaYolzabXJAlIaUUpRoFU0gAWgWR0ChbOEWRA8kdX2UKGgGaAloD0MIv5tu2SHWS0CUhpRSlGgVS8BoFkdAoW0j9ZRsM3V9lChoBmgJaA9DCKfn3VhQjHJAlIaUUpRoFUv2aBZHQKFtXcVQAMl1fZQoaAZoCWgPQwj9Ma1NYwZxQJSGlFKUaBVL9mgWR0ChbYZ7ojfOdX2UKGgGaAloD0MIqYk+H+VDcUCUhpRSlGgVS9toFkdAoW3HZsbednV9lChoBmgJaA9DCHuFBfeDgnFAlIaUUpRoFUvvaBZHQKFuJjin5zp1fZQoaAZoCWgPQwi+iLZjaiJwQJSGlFKUaBVL9mgWR0Chbmoyj59FdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 312, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-6.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:381925c04b5ff184524da8558aef4dabed8606bbf76bc677e82300bc35381c65
|
3 |
+
size 147830
|
ppo-LunarLander-v2-6/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-6/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f19bed3c820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19bed3c8b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19bed3c940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19bed3c9d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f19bed3ca60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f19bed3caf0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19bed3cb80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f19bed3cc10>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19bed3cca0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19bed3cd30>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19bed3cdc0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f19bed2fd20>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 2555904,
|
46 |
+
"_total_timesteps": 2500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670524830897561261,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAD7KT72Hh0/6CYtvnuZ375/kM89lRLgvQAAAAAAAAAAzTCOvD7buj+ZeY2+W4mXPng4Nzw6U7m8AAAAAAAAAACAs1a9fB+OPtIViz5Fhr6+5YYdPsu7jj0AAAAAAAAAAJop4Ttp/lC8UGpRPqBCXbxFdMm9rIo0vQAAgD8AAIA/M5CxvPIj1T6EKcg9vo6Yvsjc7rvmuQO9AAAAAAAAAACa1rY8CgQfu9v6g7ti2088ygNWPN4qNr0AAIA/AACAP5rB/rwV9GI/Lv3SubDJy76uVS29iQYFvQAAAAAAAAAAZgZQvBcsbz6wJP886pKdvoXosLxdjWU8AAAAAAAAAAAz2zy87IGLP0Mykr0aW9i+YhPmPEAFFj0AAAAAAAAAAE1Ug71xPV23ZYsiuBx/krPQkNq6L49BNwAAgD8AAIA/gPhEvd2YFT+/OCi9YTa+vlVBNb22kWO9AAAAAAAAAADN2O+7T7EavJ078zzzPtA7wyCLvbalujwAAIA/AACAP2ar2L2UgpQ+sAoMPmTnir5PaaO8bSkfPAAAAAAAAAAApqS1veyJ+bkISVG5Va6ZM1abLTnVgHU4AACAPwAAgD9adIg9PS56u/YfFrwvf4Q8862yvKPmYz0AAIA/AACAP4CaEL3I65Q9likFPt+Vrr7YVCC9jF+jPQAAAAAAAAAAhr8YviGTez+dVni+p9PHviK5Zb4m+a29AAAAAAAAAADmZTI91SqDP4IZBz0toca+h75MPQbaKj0AAAAAAAAAAKZZmb2ugYO6Ueq5ugKD3bXac9k6m87YOQAAAAAAAAAAIIkSPsj6hD44FGC+EyGUviCfhb2iaWe9AAAAAAAAAADNPN48EB/PPrz6pT2OgKC+itKVvJGxnTwAAAAAAAAAAOb1d72gZ6c/0ZuTviQZub51I6O9ltI0vgAAAAAAAAAAAIAAOZ+zirtwnwu91u5cvmsxvjymjZQ/AACAPwAAgD9mraY8KQaBP9ZprLzxC7K+R+/euxPzg70AAAAAAAAAAA1Cjj6E6FQ/hziAPa3V+r6k8qQ+2eYAvgAAAAAAAAAAAMgKPAAOpj7SXOO9vpySvktKhb2I7Ri+AAAAAAAAAACaIay819lJPt6jGD7sCbG+tnnkPTUAk70AAAAAAAAAADOt4LzhsIi60i8KO4xDTTms4nk46m+huQAAgD8AAIA/4JlJvi9W/j5ifjE+VsezvqfSvb023z49AAAAAAAAAAAgK4e+spDhPnZrez6/H7e+f3x5vQJX5j0AAAAAAAAAAM3ikjxD8Ri8ksMXvZThzTzABX49Xs2ovQAAgD8AAIA/TY66PXsipbpegzg5tUMrNPGLBrpqJVS4AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.02236159999999998,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIERrBxjWCcUCUhpRSlIwBbJRL64wBdJRHQKFcMywfQrt1fZQoaAZoCWgPQwih2Aqa1mdzQJSGlFKUaBVL7GgWR0ChXGubI91VdX2UKGgGaAloD0MIEW4yqgywbkCUhpRSlGgVS+poFkdAoVxyMUAT7HV9lChoBmgJaA9DCC7kEdzINHBAlIaUUpRoFUvlaBZHQKFccRKYiPh1fZQoaAZoCWgPQwjt8UI6fPhwQJSGlFKUaBVL/WgWR0ChXQYtg8bJdX2UKGgGaAloD0MIyF7v/njUbECUhpRSlGgVS+hoFkdAoV0xLZi/f3V9lChoBmgJaA9DCEt2bARiz3BAlIaUUpRoFUv0aBZHQKFdOPlMh5h1fZQoaAZoCWgPQwgicY+lD7VwQJSGlFKUaBVL72gWR0ChXVWbXpW4dX2UKGgGaAloD0MIgxd9BSmic0CUhpRSlGgVTVkCaBZHQKFdao86mwd1fZQoaAZoCWgPQwio4zEDFYBvQJSGlFKUaBVL4GgWR0ChXXbvPToddX2UKGgGaAloD0MI4KKTpVZ+cECUhpRSlGgVTRYBaBZHQKFdkY1pCa91fZQoaAZoCWgPQwgQzNHjd2txQJSGlFKUaBVL5WgWR0ChXhGAbyYpdX2UKGgGaAloD0MIHeihto2hcUCUhpRSlGgVS/NoFkdAoV4uorFwUHV9lChoBmgJaA9DCLh1N091TW9AlIaUUpRoFU0BAWgWR0ChXrkZ75VPdX2UKGgGaAloD0MIaLEUydchcECUhpRSlGgVS/toFkdAoV83fEXLvHV9lChoBmgJaA9DCB9pcFsbK3FAlIaUUpRoFUv4aBZHQKFfSnpjc211fZQoaAZoCWgPQwgLQnkfh6ZwQJSGlFKUaBVL92gWR0ChX2DDbah6dX2UKGgGaAloD0MI6+QMxZ19cECUhpRSlGgVS+ZoFkdAoV95CF9KEnV9lChoBmgJaA9DCA0YJH2aDXFAlIaUUpRoFU0qAWgWR0ChX47o8p1BdX2UKGgGaAloD0MIck7sof1lcUCUhpRSlGgVS+poFkdAoV/Pg9/z8XV9lChoBmgJaA9DCCFblq/LhnJAlIaUUpRoFUvvaBZHQKFf6iSJTER1fZQoaAZoCWgPQwixFMlXgvtvQJSGlFKUaBVNAAFoFkdAoWAOJtSAH3V9lChoBmgJaA9DCFVntcCeV3BAlIaUUpRoFU0CAWgWR0ChYB9YwIt2dX2UKGgGaAloD0MIjdMQVfjocUCUhpRSlGgVS/ZoFkdAoWCMCq6vq3V9lChoBmgJaA9DCEGasWg6qnJAlIaUUpRoFU0JAWgWR0ChYL5dOZb7dX2UKGgGaAloD0MI61OOyeJpckCUhpRSlGgVTR0BaBZHQKFg0+dsi0R1fZQoaAZoCWgPQwiJCP8iKBJwQJSGlFKUaBVNHQFoFkdAoWDhuVHFxXV9lChoBmgJaA9DCJazd0ab+XFAlIaUUpRoFUvgaBZHQKFhMx3V0911fZQoaAZoCWgPQwg1071Oqh5wQJSGlFKUaBVNPAFoFkdAoWE9N34bj3V9lChoBmgJaA9DCJxNRwD3P3JAlIaUUpRoFU0DAWgWR0ChYX0DEFW5dX2UKGgGaAloD0MIC5dV2Ay5cUCUhpRSlGgVS+JoFkdAoWGVt0mtyXV9lChoBmgJaA9DCGtKsg6HVHBAlIaUUpRoFUvxaBZHQKFhtjvNNah1fZQoaAZoCWgPQwhUkJ+NHOxyQJSGlFKUaBVL62gWR0ChYdAlOXVtdX2UKGgGaAloD0MICMpt+56bcECUhpRSlGgVTTkBaBZHQKFid0HyEtd1fZQoaAZoCWgPQwhzZOWXARZyQJSGlFKUaBVNEAFoFkdAoWKsQ5FPSHV9lChoBmgJaA9DCKotdZCXZHFAlIaUUpRoFUvgaBZHQKFiufqX4TN1fZQoaAZoCWgPQwjk9WBS/BluQJSGlFKUaBVL/mgWR0ChYwXaSLZSdX2UKGgGaAloD0MIqJAr9azncUCUhpRSlGgVS/5oFkdAoWMr6FdsznV9lChoBmgJaA9DCARXeQLhxHFAlIaUUpRoFU0AAWgWR0ChY1uNo8ISdX2UKGgGaAloD0MIgIEgQEYwcUCUhpRSlGgVTRsBaBZHQKFj9OerdWR1fZQoaAZoCWgPQwgnaJPD59dwQJSGlFKUaBVNLAFoFkdAoWP0ZpBX0XV9lChoBmgJaA9DCDZWYp6VaHNAlIaUUpRoFU0lAWgWR0ChZAAyuZCwdX2UKGgGaAloD0MIt18+WfHHcUCUhpRSlGgVTRYBaBZHQKFkl/4qPOp1fZQoaAZoCWgPQwgE5Euo4HJvQJSGlFKUaBVNAwFoFkdAoWTDel9Br3V9lChoBmgJaA9DCP6Y1qbxFXBAlIaUUpRoFUvoaBZHQKFky+mFajh1fZQoaAZoCWgPQwiDMLd7uRptQJSGlFKUaBVL5WgWR0ChZNKEeyRkdX2UKGgGaAloD0MIIZIhx9bDRUCUhpRSlGgVS8FoFkdAoWUTmdRR/HV9lChoBmgJaA9DCNNnB1zX1m5AlIaUUpRoFU0pAWgWR0ChZSitihFmdX2UKGgGaAloD0MIrFPle8ZQcUCUhpRSlGgVS/1oFkdAoWUzLhaTwHV9lChoBmgJaA9DCKNAn8iTCnFAlIaUUpRoFU0TAWgWR0ChZaO+yquKdX2UKGgGaAloD0MIU7ExryNPcUCUhpRSlGgVS/doFkdAoWWzAP/aQHV9lChoBmgJaA9DCKSNI9aiIXJAlIaUUpRoFU0IAWgWR0ChZbn80k4WdX2UKGgGaAloD0MIAwgfSrQEckCUhpRSlGgVS/NoFkdAoWW+5lOGkHV9lChoBmgJaA9DCIzc09XdgHBAlIaUUpRoFU0OAWgWR0ChZhbayrxRdX2UKGgGaAloD0MIBwySPi1qckCUhpRSlGgVS+loFkdAoWY+mR/3FnV9lChoBmgJaA9DCMnIWdhThHJAlIaUUpRoFU0KAWgWR0ChZkox59mZdX2UKGgGaAloD0MIPUZ55uX5cUCUhpRSlGgVS+VoFkdAoWaCCHymRHV9lChoBmgJaA9DCDlCBvKsznNAlIaUUpRoFUv6aBZHQKFmiWAwwkB1fZQoaAZoCWgPQwiWQbXBSbxwQJSGlFKUaBVL+mgWR0ChZqpudf9hdX2UKGgGaAloD0MIYymSrwQ8cECUhpRSlGgVS9hoFkdAoWbR19v0iHV9lChoBmgJaA9DCBQktrvHgnBAlIaUUpRoFUvdaBZHQKFm1FvQ4S91fZQoaAZoCWgPQwg58dWOYk9yQJSGlFKUaBVL9WgWR0ChZxor4FibdX2UKGgGaAloD0MIdsHgmruJbkCUhpRSlGgVTQsBaBZHQKFnUsXBP9F1fZQoaAZoCWgPQwgtXcE2YjJxQJSGlFKUaBVL8GgWR0ChZ9yaEzwddX2UKGgGaAloD0MIc7uX++SNbkCUhpRSlGgVS+1oFkdAoWgAk7fYSXV9lChoBmgJaA9DCHv5nSaz5nJAlIaUUpRoFU0eAWgWR0ChaAxW1c+rdX2UKGgGaAloD0MI2nQEcDMlcUCUhpRSlGgVS+9oFkdAoWi85lvqDHV9lChoBmgJaA9DCEH0pEzq0m1AlIaUUpRoFUv4aBZHQKFowkIHC411fZQoaAZoCWgPQwh/iXjr/A9wQJSGlFKUaBVNAgFoFkdAoWjYUWVNYnV9lChoBmgJaA9DCMug2uCED3BAlIaUUpRoFU0QAWgWR0ChaN3IuGsWdX2UKGgGaAloD0MI1UDzOfe7cECUhpRSlGgVS9xoFkdAoWjd3t8eCHV9lChoBmgJaA9DCPutnSgJaXFAlIaUUpRoFUvRaBZHQKFpZNW2gFp1fZQoaAZoCWgPQwgp6WFo9SllQJSGlFKUaBVN6ANoFkdAoWmp7sv7FnV9lChoBmgJaA9DCAWlaOVefDVAlIaUUpRoFUu4aBZHQKFptc9GI9F1fZQoaAZoCWgPQwgykGeXLzFyQJSGlFKUaBVL9GgWR0ChajjDbah6dX2UKGgGaAloD0MIKChFK3dVcUCUhpRSlGgVS/xoFkdAoWo4GB4D93V9lChoBmgJaA9DCLX+lgA8EHJAlIaUUpRoFU0ZAWgWR0Chak0ngHeKdX2UKGgGaAloD0MIuw7VlKSxc0CUhpRSlGgVTRgBaBZHQKFqT69kBjp1fZQoaAZoCWgPQwgw1GGFGyRwQJSGlFKUaBVL12gWR0ChamSup0fYdX2UKGgGaAloD0MIy5wui4ksckCUhpRSlGgVS+xoFkdAoWpnJJXhfnV9lChoBmgJaA9DCITWw5fJA3BAlIaUUpRoFUv3aBZHQKFqsLrHEMt1fZQoaAZoCWgPQwhPJJhqZkhyQJSGlFKUaBVL6WgWR0ChauizkZJkdX2UKGgGaAloD0MI2CjrNxO8b0CUhpRSlGgVS+BoFkdAoWsYggX/HnV9lChoBmgJaA9DCJ3y6EYYO3JAlIaUUpRoFU0SAWgWR0ChazTxG2CvdX2UKGgGaAloD0MIjsu4qUEackCUhpRSlGgVS/poFkdAoWtIZwXIl3V9lChoBmgJaA9DCEbvVMC9cW5AlIaUUpRoFUvwaBZHQKFrlqoqCpZ1fZQoaAZoCWgPQwh9Wdqpuc9xQJSGlFKUaBVL5WgWR0Cha8TK9wm3dX2UKGgGaAloD0MIj4r/O6K6cECUhpRSlGgVS+ZoFkdAoWv2SOinHnV9lChoBmgJaA9DCBKDwMphZXFAlIaUUpRoFUv4aBZHQKFsB9F4LTh1fZQoaAZoCWgPQwgs1nCR+/FwQJSGlFKUaBVNBQFoFkdAoWwX/3nIQ3V9lChoBmgJaA9DCK3e4XZoJHJAlIaUUpRoFUv5aBZHQKFsWSr5qM51fZQoaAZoCWgPQwiQh767Fc1yQJSGlFKUaBVL6GgWR0ChbIVkc0cfdX2UKGgGaAloD0MIKpDZWfSVbUCUhpRSlGgVS/xoFkdAoWy3+S8rZ3V9lChoBmgJaA9DCEaYolzabXJAlIaUUpRoFU0gAWgWR0ChbOEWRA8kdX2UKGgGaAloD0MIv5tu2SHWS0CUhpRSlGgVS8BoFkdAoW0j9ZRsM3V9lChoBmgJaA9DCKfn3VhQjHJAlIaUUpRoFUv2aBZHQKFtXcVQAMl1fZQoaAZoCWgPQwj9Ma1NYwZxQJSGlFKUaBVL9mgWR0ChbYZ7ojfOdX2UKGgGaAloD0MIqYk+H+VDcUCUhpRSlGgVS9toFkdAoW3HZsbednV9lChoBmgJaA9DCHuFBfeDgnFAlIaUUpRoFUvvaBZHQKFuJjin5zp1fZQoaAZoCWgPQwi+iLZjaiJwQJSGlFKUaBVL9mgWR0Chbmoyj59FdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 312,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 8,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-6/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9eb8df584a608b10075da20d0f6ba3871238a53315eede86814f5d68f772ff4
|
3 |
+
size 87929
|
ppo-LunarLander-v2-6/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddc532562af2c2bc5fd16369e85194e72401f38bc5f74e869bf8f964f2e04023
|
3 |
+
size 43201
|
ppo-LunarLander-v2-6/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-6/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (234 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.924734841918, "std_reward": 11.973096276263574, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T19:18:12.132765"}
|