ppo-LunarLander-v2-7 / config.json
jfjensen's picture
Upload PPO LunarLander-v2 trained agent
d3fa430
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb6272a75e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb6272a7670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb6272a7700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb6272a7790>", "_build": "<function ActorCriticPolicy._build at 0x7fb6272a7820>", "forward": "<function ActorCriticPolicy.forward at 0x7fb6272a78b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb6272a7940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb6272a79d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb6272a7a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb6272a7af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb6272a7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb62729de70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS4BLgGWMAnZmlF2UKEuAS4BldWF1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [128, 128], "vf": [128, 128]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 2621440, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670673861562007649, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQgAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYACAAAAAAAAIClbD2kcF0239crO78rQjgO+Bu7oFjuuAAAgD8AAIA/ZiKOO/ZkX7oAOqk7vImytRp9Z7k8qsK6AACAPwAAgD+AsyE9uH7QuQp8kLwFf1e0cdUMuzDm5TMAAIA/AACAP820yrzh2rA5OT21PHZqIjshNRk75s5JPAAAAAAAAAAAZnChPYULjrnVuGQ70YFINsnmMztw4IS6AACAPwAAgD8z+do8e7CSuhnKpbsmVoG2cz8GuxrF6jUAAIA/AACAPw1K9r17vJk5bnkcOqImVrdH0vO7Y9Z4NgAAgD8AAIA/mq9HPXygQz6qaLc8RDFCvkLUgjtKrP48AAAAAAAAAABN9029SMGEOT1t17o91Wy2xMdwOwIABDoAAIA/AACAP4ByOr323Cy6G7EiuykLwDWUaWS6kOkvtQAAgD8AAIA/fcpYvg4Xwz4Kjds8DYXAvnjcw739vFO9AAAAAAAAAABNy7g9KSBsuiySk7tfuBq3iHSiOVfsqToAAIA/AACAP01jab1cjy03X1tAO8Y7ibaCcVS7KKmJtQAAgD8AAIA/TdtcPbgWurkyy/E6Tb9VNad2r7vnCQ26AACAPwAAgD+676k+yeEFP7JBG74zdcW+nYhIPsDLAL4AAAAAAAAAAJpRaDvhWoS4HKmNu5x0f7xded076UYTPQAAAAAAAAAAPYeMvlJmWz/x5AC/1ZgavwR2n74SEya+AAAAAAAAAAAthwg+bBqMu7qyTTyQ8Fy6gki8vENgPbsAAIA/AACAP2Z/mb3DmQi6Tu/hOvddkjX0mny6suECugAAgD8AAIA/ZlWyvIU7nbnoWNO6LfuTubX0+LqMiAI6AACAPwAAgD/N/9K89vhPuuYdHztvflc16P73umL2OLoAAIA/AACAP81ikj0p1G+6ExBYu2RMjrZ5rTG7BYt6OgAAgD8AAIA/zdCjPMMRObqgyn87S0erPC5aTzvOJZQ9AACAPwAAgD9NR0s9w30DujcTGjvxN002HEonuwcKNboAAIA/AACAP5rz/Tz2REO6OSvBOaWSD7Vkh4a6kUsHtAAAgD8AAIA/M5p8PfYMbLpyDdU65E9sNh/KZDti+/O5AACAPwAAgD8T1EG+m+2AvFPMFrz94US6mmXsPbniMzsAAIA/AACAP4AtfL32OAe6jh2EOzXSbzgg46g7iNtAuAAAgD8AAIA/wNjcvY9aJbpz7z27jngVtXsgJTu2aoE0AACAPwAAgD+eIYu+rMwTP5nCl71EF+a+sNmYvnAIhT0AAAAAAAAAADOXxb09ChS53SC+uyx3gDYGYKO7tlXttQAAgD8AAAAAM40VvB9Nv7kWLqI7GTYptuy/Ezo5WSa1AACAPwAAgD+zuNy9XO8xupInjztxPjGziAcsu/U7abMAAIA/AACAPwCoC7xcYxK62PT0Oz421ruMItw6POW5vAAAAAAAAIA/ZjMDPY8+erqIn4U7ZjbFNC+cYbvIMZm6AACAPwAAgD8mdJs9XI8/N+kinryr1rc1fGQMuQMMKrUAAIA/AACAP82w/zv2zAm6ymuDO71bh7yVSHS64NVsvQAAAAAAAIA/moQ4vq6ygryoDU27cx2PuR6c7D1aU4Y6AACAPwAAgD+ahNI8rj+cOTBKmbuQRy63uBCXu8uhujoAAIA/AACAPwA9gjzsCYm51VY7Of5EG7alkYm79UZfuAAAgD8AAIA/mmk+PPbcZboCbs+6pF9NtkfdarqgS/A5AACAPwAAgD9zPMm9HyXJuZ4msDzly4O80NQcu/YWEL0AAAAAAAAAACYvwD3saZ65cNxVuyaChjjlVZS7nmXrOQAAgD8AAIA//jCzvnl8rj59vFI+4IPQvv4dGr4lz0o+AAAAAAAAAAAzRZs9XPNLusacEbzf5Zm5D6R/upZtCjkAAIA/AACAP81gXj5dYUE+ck7AvcVhxL7KZ5s+A3IhvQAAAAAAAAAAM0sAu49+Z7rasha87wjEMgzojrZesEYyAACAPwAAgD9z8bK9w9k3ul9KlDsjtrE4/y46u/r8F7kAAAAAAACAP8AzAr4KkAi7uN0JPIa6Jj0ExU48ULG9OwAAgD8AAIA/QBThPVxTBLpzYXq7Bje9N00sSjvpbDg6AACAPwAAgD8zPeA9e7qdumUPI7x8Ztm12OxPOpnEQDUAAAAAAACAP01kuT2PklO6YgGbujxrl7Q3Bey6/+KvOQAAgD8AAIA/ZlSIvY8eQLp9tnC6t2zDNBkogLn6OIs5AACAPwAAgD+zBly9Kbh/umawy7reGJa1ZhO5uXgWCDUAAIA/AACAP3Orl72uPYW8JgOlPZeJmzxf7NE9rjqSPQAAgD8AAIA/TQFZPSm4E7pTVNk7O4I5Ni5/rLdNVzE1AACAPwAAgD8zHvi89pw2ur3w4Tq0Hm829rnAN5KQAroAAIA/AACAP80oezzhXoa6LZ0QvNB23zZqPhi7iGFItgAAgD8AAIA/APwQPQoHYzqWfa+7enlsOP2GKrtCBzk4AACAPwAAgD9mKhw8hQv0uRZjqLj+gfqz8EWeO7K/xTcAAIA/AACAPyalCz5UNoE/oeqRPjGbDb+CrhI+k16APAAAAAAAAAAAmrG/vEg5rzkYvVY8/UEhPRKYXDtKWzg8AACAPwAAgD8NqcE94Yy7ut7b6Lp8dN+1Fwa+udinBDoAAIA/AACAP9pQoz2P1mO6WtJoNwCEZDKgmkK6i7ODtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBHP0+D3iZkCUhpRSlIwBbJRN6AOMAXSUR0CxaFsLfDUFdX2UKGgGaAloD0MInWNA9vqDYUCUhpRSlGgVTegDaBZHQLFoXJ7b+Lp1fZQoaAZoCWgPQwjhDP5+MQNiQJSGlFKUaBVN6ANoFkdAsWiV7KJVKnV9lChoBmgJaA9DCMWRByILAGVAlIaUUpRoFU3oA2gWR0CxaSe5J9RadX2UKGgGaAloD0MIX5hMFQxHZkCUhpRSlGgVTegDaBZHQLFq8UwztTl1fZQoaAZoCWgPQwi/Y3jsZ0ZiQJSGlFKUaBVN6ANoFkdAsWuyKUFB6nV9lChoBmgJaA9DCLtHNlfNTWVAlIaUUpRoFU3oA2gWR0CxbBO3c580dX2UKGgGaAloD0MIeAlOfaCrYUCUhpRSlGgVTegDaBZHQLFthc8Tzup1fZQoaAZoCWgPQwgheHx7175lQJSGlFKUaBVN6ANoFkdAsW3bYqXnhnV9lChoBmgJaA9DCOCCbFm+0l5AlIaUUpRoFU3oA2gWR0Cxbd4nndO7dX2UKGgGaAloD0MIObcJ90rgYECUhpRSlGgVTegDaBZHQLFxQBKtga51fZQoaAZoCWgPQwi14hsKH9xgQJSGlFKUaBVN6ANoFkdAsXLE4cWCVnV9lChoBmgJaA9DCFJ/vcICBGZAlIaUUpRoFU3oA2gWR0CxcyFM7EHddX2UKGgGaAloD0MIpZ4FoTyJZUCUhpRSlGgVTegDaBZHQLF0BhAnlXB1fZQoaAZoCWgPQwjImpFBbsJhQJSGlFKUaBVN6ANoFkdAsXUnj2i+L3V9lChoBmgJaA9DCMmtSbclamdAlIaUUpRoFU3oA2gWR0CxdSh8YyfudX2UKGgGaAloD0MI0ZMyqaFbZECUhpRSlGgVTegDaBZHQLF2NXyiEg51fZQoaAZoCWgPQwgTKji8ILtkQJSGlFKUaBVN6ANoFkdAsXaad8RcvHV9lChoBmgJaA9DCLbz/dT4PmBAlIaUUpRoFU3oA2gWR0Cxd61WjoIOdX2UKGgGaAloD0MIjJ/GvfnoUkCUhpRSlGgVS7VoFkdAsXgDi5uqFXV9lChoBmgJaA9DCBx79lwmuWVAlIaUUpRoFU3oA2gWR0CxeBzin5zpdX2UKGgGaAloD0MISu8bX/uxY0CUhpRSlGgVTegDaBZHQLF4YtTUAkt1fZQoaAZoCWgPQwjE6o8wDKpgQJSGlFKUaBVN6ANoFkdAsXkXRlYlp3V9lChoBmgJaA9DCNjyyvW2pGFAlIaUUpRoFU3oA2gWR0CxeWxT0g8sdX2UKGgGaAloD0MIaCWt+IZDZECUhpRSlGgVTegDaBZHQLF52Z5AyEd1fZQoaAZoCWgPQwhENSVZh29kQJSGlFKUaBVN6ANoFkdAsXyUvFm4AnV9lChoBmgJaA9DCPLqHAMysmRAlIaUUpRoFU3oA2gWR0CxfLBAnlXBdX2UKGgGaAloD0MI3/5cNOQQYkCUhpRSlGgVTegDaBZHQLF+MldC3PR1fZQoaAZoCWgPQwjBxYoazKthQJSGlFKUaBVN6ANoFkdAsYAhW5painV9lChoBmgJaA9DCJazd0Zb12BAlIaUUpRoFU3oA2gWR0CxgNgkLQXzdX2UKGgGaAloD0MIFjJXBlVbZECUhpRSlGgVTegDaBZHQLGBocn3L3d1fZQoaAZoCWgPQwhZvi7D/29hQJSGlFKUaBVN6ANoFkdAsYHokt29tnV9lChoBmgJaA9DCDC5UWSte11AlIaUUpRoFU3oA2gWR0CxgffRE4NrdX2UKGgGaAloD0MIOxkcJa8AZUCUhpRSlGgVTegDaBZHQLGDjsF+uvF1fZQoaAZoCWgPQwhfX+tSI8hhQJSGlFKUaBVN6ANoFkdAsYTDPzFuN3V9lChoBmgJaA9DCC7jpgYaXGRAlIaUUpRoFU3oA2gWR0CxhNb6Hj6vdX2UKGgGaAloD0MIfXcrS3TrYkCUhpRSlGgVTegDaBZHQLGI/ESM98t1fZQoaAZoCWgPQwjg9C7eD9FkQJSGlFKUaBVN6ANoFkdAsYkfi0fHP3V9lChoBmgJaA9DCASOBBrsLGhAlIaUUpRoFU3oA2gWR0CxiSj6i0v5dX2UKGgGaAloD0MIvCTOiihbZkCUhpRSlGgVTegDaBZHQLGJgBbfP5Z1fZQoaAZoCWgPQwhgyVUs/kBjQJSGlFKUaBVN6ANoFkdAsYn8Hqu8snV9lChoBmgJaA9DCPGBHf+FjmJAlIaUUpRoFU3oA2gWR0CxioBMi8nNdX2UKGgGaAloD0MIYYxIFFrLY0CUhpRSlGgVTegDaBZHQLGK6t78ejp1fZQoaAZoCWgPQwh2ptB5DXloQJSGlFKUaBVN6ANoFkdAsYz8Et/WlXV9lChoBmgJaA9DCMr7OJojt2BAlIaUUpRoFU3oA2gWR0CxjqvO2RaHdX2UKGgGaAloD0MI2su201bKYkCUhpRSlGgVTegDaBZHQLGQelyBCld1fZQoaAZoCWgPQwg5fqg0Yj9kQJSGlFKUaBVN6ANoFkdAsZIyXKKYRnV9lChoBmgJaA9DCP6cgvxszGRAlIaUUpRoFU3oA2gWR0Cxkzjvuw5edX2UKGgGaAloD0MItMu3PixbYkCUhpRSlGgVTegDaBZHQLGUehbGFSN1fZQoaAZoCWgPQwhlyLH1jJFjQJSGlFKUaBVN6ANoFkdAsZSXo1UEPnV9lChoBmgJaA9DCIcUAySaLl9AlIaUUpRoFU3oA2gWR0CxlNKASWZ7dX2UKGgGaAloD0MIcm4T7pVJZUCUhpRSlGgVTegDaBZHQLGVDAZbY9R1fZQoaAZoCWgPQwhmguFcQwVoQJSGlFKUaBVN6ANoFkdAsZUYTpPhynV9lChoBmgJaA9DCD6UaMnjaVxAlIaUUpRoFU3oA2gWR0CxlmJamoBJdX2UKGgGaAloD0MIGw+22O0OXkCUhpRSlGgVTegDaBZHQLGWf5+H8CR1fZQoaAZoCWgPQwgV5dL4hZJlQJSGlFKUaBVN6ANoFkdAsZdLzqbBoHV9lChoBmgJaA9DCBWPi2qRU2VAlIaUUpRoFU3oA2gWR0CxmKyay8jBdX2UKGgGaAloD0MI3QcgtQk5ZUCUhpRSlGgVTegDaBZHQLGaDi6g/Tt1fZQoaAZoCWgPQwh+HM2RFSljQJSGlFKUaBVN6ANoFkdAsZrlbiZOSHV9lChoBmgJaA9DCNwqiIEu6WNAlIaUUpRoFU3oA2gWR0Cxm0TfR/mUdX2UKGgGaAloD0MIZcdGIF55Y0CUhpRSlGgVTegDaBZHQLGcfcFyJbd1fZQoaAZoCWgPQwjymeyfJ8hlQJSGlFKUaBVN6ANoFkdAsZyBIe5nUXV9lChoBmgJaA9DCEG62LTSXWJAlIaUUpRoFU3oA2gWR0CxniJh8YygdX2UKGgGaAloD0MItOcyNQlEWUCUhpRSlGgVTegDaBZHQLGekGKAJ9l1fZQoaAZoCWgPQwjQ0aqW9ORiQJSGlFKUaBVN6ANoFkdAsZ9a5iExqXV9lChoBmgJaA9DCPQau0T1bGZAlIaUUpRoFU3oA2gWR0CxoFNO2y9mdX2UKGgGaAloD0MIJsXHJ2QSZECUhpRSlGgVTegDaBZHQLGgVDRc/t91fZQoaAZoCWgPQwifdY2WAyBhQJSGlFKUaBVN6ANoFkdAsaB9jBl+VnV9lChoBmgJaA9DCDSdnQwOR2RAlIaUUpRoFU3oA2gWR0CxoN06T4cndX2UKGgGaAloD0MI09ufiwYhYECUhpRSlGgVTegDaBZHQLGiBQP7N0N1fZQoaAZoCWgPQwjzAuyj0yNiQJSGlFKUaBVN6ANoFkdAsaK3/MnqmnV9lChoBmgJaA9DCBGOWfYkQGRAlIaUUpRoFU3oA2gWR0CxozkEPlMidX2UKGgGaAloD0MIH4MVp1r5YkCUhpRSlGgVTegDaBZHQLGlSCJoCdV1fZQoaAZoCWgPQwgnoImwYbFkQJSGlFKUaBVN6ANoFkdAsaXEaOxSpHV9lChoBmgJaA9DCOc3TDTIQGVAlIaUUpRoFU3oA2gWR0CxqX1mz0HydX2UKGgGaAloD0MI+l5DcNyYZUCUhpRSlGgVTegDaBZHQLGq9zFdcB51fZQoaAZoCWgPQwjmlICYhFFhQJSGlFKUaBVN6ANoFkdAsatQkC3gDXV9lChoBmgJaA9DCCfeAZ40HGRAlIaUUpRoFU3oA2gWR0CxrC31BdD6dX2UKGgGaAloD0MIuDzWjIwxZECUhpRSlGgVTegDaBZHQLGtM+t8uz11fZQoaAZoCWgPQwifqkIDMQ1nQJSGlFKUaBVN6ANoFkdAsa009dNWVHV9lChoBmgJaA9DCMxCO6fZyWVAlIaUUpRoFU3oA2gWR0Cxrj+wgTysdX2UKGgGaAloD0MIr5RliOPSYkCUhpRSlGgVTegDaBZHQLGuoEtuk1x1fZQoaAZoCWgPQwhQ4QhSKdVgQJSGlFKUaBVN6ANoFkdAsa+wVafSQnV9lChoBmgJaA9DCBR4J58eeWFAlIaUUpRoFU3oA2gWR0CxsCHdCVrzdX2UKGgGaAloD0MIHZPF/UcOYkCUhpRSlGgVTegDaBZHQLGwRcZ9/jN1fZQoaAZoCWgPQwghI6DCEWdhQJSGlFKUaBVN6ANoFkdAsbCtix3V1HV9lChoBmgJaA9DCBtivObV7GNAlIaUUpRoFU3oA2gWR0Cxsakp3HJcdX2UKGgGaAloD0MIuRgD6zjeXkCUhpRSlGgVTegDaBZHQLGyJrOJLuh1fZQoaAZoCWgPQwhaDYl7LEhkQJSGlFKUaBVN6ANoFkdAsbLCCEpRXXV9lChoBmgJaA9DCKeSAaAKLWRAlIaUUpRoFU3oA2gWR0CxtZ4w22ofdX2UKGgGaAloD0MIfEYiNIKXYECUhpRSlGgVTegDaBZHQLG1uHyVfNR1fZQoaAZoCWgPQwiqYFRSJ+9jQJSGlFKUaBVN6ANoFkdAsbcardWQwXV9lChoBmgJaA9DCOkmMQgsdmBAlIaUUpRoFU3oA2gWR0CxuPGLk0aZdX2UKGgGaAloD0MI1zBD4wndZECUhpRSlGgVTegDaBZHQLG5nmxMWXV1fZQoaAZoCWgPQwiJQPUPoklnQJSGlFKUaBVN6ANoFkdAsbpkZ9/jKnV9lChoBmgJaA9DCPJgi92+wmVAlIaUUpRoFU3oA2gWR0CxuqYLPUrkdX2UKGgGaAloD0MIhQoOLwjZZUCUhpRSlGgVTegDaBZHQLG6tYUWVNZ1fZQoaAZoCWgPQwhodXKGYthhQJSGlFKUaBVN6ANoFkdAsbxDL1VYIXV9lChoBmgJaA9DCJawNsbOJmFAlIaUUpRoFU3oA2gWR0CxvXYBBAv+dX2UKGgGaAloD0MI4STNH1M0ZkCUhpRSlGgVTegDaBZHQLG9ic32mHh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 4096, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}