File size: 1,938 Bytes
8b46360
68d42e8
 
4e1b038
 
 
 
68d42e8
 
 
8b46360
 
4e1b038
 
8b46360
 
4e1b038
8b46360
4e1b038
 
8b46360
4e1b038
 
 
 
 
 
8b46360
4e1b038
8b46360
4e1b038
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
base_model:
- google-bert/bert-base-uncased
datasets:
- microsoft/ms_marco
language:
- en
library_name: transformers
pipeline_tag: feature-extraction
license: apache-2.0
---

# Model Card
This is the official model from the paper [Hypencoder: Hypernetworks for Information Retrieval](https://arxiv.org/abs/2502.05364).

## Model Details
This is a Hypencoder Dual Enocder. It contains two trunks the text encoder and Hypencoder. The text encoder converts items into 768 dimension vectors while the Hypencoder converts text into a small neural network which takes the 768 dimension vector from the text encoder as input. This small network is then used to output a relevance score. To use this model please take a look at the [Github](https://github.com/jfkback/hypencoder-paper) page which contains the required code and details on how to run the model.

### Model Variants
We released the four models used in the paper. Each model is identical except the small neural networks, which we refer to as q-nets, have different numbers of hidden layers.

| Huggingface Repo | Number of Layers |
|:------------------:|:------------------:|
| [jfkback/hypencoder.2_layer](https://huggingface.co/jfkback/hypencoder.2_layer) |          2        |
| [jfkback/hypencoder.4_layer](https://huggingface.co/jfkback/hypencoder.4_layer) |          4        |
| [jfkback/hypencoder.6_layer](https://huggingface.co/jfkback/hypencoder.6_layer) |          6        |
| [jfkback/hypencoder.8_layer](https://huggingface.co/jfkback/hypencoder.8_layer) |          8        |

## Citation
**BibTeX:**
```
@misc{killingback2025hypencoderhypernetworksinformationretrieval,
      title={Hypencoder: Hypernetworks for Information Retrieval}, 
      author={Julian Killingback and Hansi Zeng and Hamed Zamani},
      year={2025},
      eprint={2502.05364},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2502.05364}, 
}
```