File size: 6,731 Bytes
0b5c87b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
datasets:
- layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlm-captive-corp-70
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: layoutlmv3
type: layoutlmv3
config: FormsDataset
split: test
args: FormsDataset
metrics:
- name: Precision
type: precision
value: 0.9517271922054916
- name: Recall
type: recall
value: 0.968018018018018
- name: F1
type: f1
value: 0.9598034836980796
- name: Accuracy
type: accuracy
value: 0.9712673165726013
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlm-captive-corp-70
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1795
- Precision: 0.9517
- Recall: 0.9680
- F1: 0.9598
- Accuracy: 0.9713
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0311 | 1.0 | 23 | 0.1756 | 0.9478 | 0.9658 | 0.9567 | 0.9708 |
| 0.0282 | 2.0 | 46 | 0.1781 | 0.9486 | 0.9649 | 0.9567 | 0.9705 |
| 0.0296 | 3.0 | 69 | 0.1780 | 0.9481 | 0.9635 | 0.9558 | 0.9697 |
| 0.0252 | 4.0 | 92 | 0.1870 | 0.9463 | 0.9608 | 0.9535 | 0.9674 |
| 0.0255 | 5.0 | 115 | 0.1780 | 0.9476 | 0.9622 | 0.9549 | 0.9697 |
| 0.022 | 6.0 | 138 | 0.1779 | 0.9469 | 0.9644 | 0.9556 | 0.9700 |
| 0.0196 | 7.0 | 161 | 0.1806 | 0.9503 | 0.9649 | 0.9575 | 0.9695 |
| 0.0184 | 8.0 | 184 | 0.1827 | 0.9524 | 0.9653 | 0.9588 | 0.9705 |
| 0.0173 | 9.0 | 207 | 0.1888 | 0.9489 | 0.9626 | 0.9557 | 0.9687 |
| 0.0175 | 10.0 | 230 | 0.1799 | 0.9500 | 0.9667 | 0.9582 | 0.9708 |
| 0.0155 | 11.0 | 253 | 0.1814 | 0.9486 | 0.9653 | 0.9569 | 0.9710 |
| 0.0144 | 12.0 | 276 | 0.1853 | 0.9473 | 0.9640 | 0.9556 | 0.9702 |
| 0.0139 | 13.0 | 299 | 0.1840 | 0.9469 | 0.9649 | 0.9558 | 0.9697 |
| 0.0133 | 14.0 | 322 | 0.1797 | 0.9504 | 0.9662 | 0.9582 | 0.9718 |
| 0.0126 | 15.0 | 345 | 0.1832 | 0.9508 | 0.9671 | 0.9589 | 0.9710 |
| 0.0121 | 16.0 | 368 | 0.1795 | 0.9517 | 0.9680 | 0.9598 | 0.9713 |
| 0.0117 | 17.0 | 391 | 0.1844 | 0.9504 | 0.9658 | 0.9580 | 0.9705 |
| 0.0108 | 18.0 | 414 | 0.1850 | 0.9500 | 0.9662 | 0.9580 | 0.9702 |
| 0.0105 | 19.0 | 437 | 0.1847 | 0.9517 | 0.9671 | 0.9593 | 0.9713 |
| 0.0107 | 20.0 | 460 | 0.1846 | 0.9482 | 0.9653 | 0.9567 | 0.9702 |
| 0.0098 | 21.0 | 483 | 0.1863 | 0.9495 | 0.9662 | 0.9578 | 0.9702 |
| 0.0099 | 22.0 | 506 | 0.1871 | 0.9473 | 0.9635 | 0.9553 | 0.9692 |
| 0.0091 | 23.0 | 529 | 0.1879 | 0.9482 | 0.9644 | 0.9562 | 0.9700 |
| 0.0091 | 24.0 | 552 | 0.1859 | 0.9517 | 0.9671 | 0.9593 | 0.9713 |
| 0.0091 | 25.0 | 575 | 0.1849 | 0.9479 | 0.9671 | 0.9574 | 0.9713 |
| 0.0088 | 26.0 | 598 | 0.1883 | 0.9495 | 0.9662 | 0.9578 | 0.9702 |
| 0.0083 | 27.0 | 621 | 0.1884 | 0.9495 | 0.9658 | 0.9576 | 0.9700 |
| 0.0079 | 28.0 | 644 | 0.1890 | 0.9499 | 0.9658 | 0.9578 | 0.9710 |
| 0.008 | 29.0 | 667 | 0.1921 | 0.9491 | 0.9658 | 0.9574 | 0.9700 |
| 0.0075 | 30.0 | 690 | 0.1904 | 0.9504 | 0.9662 | 0.9582 | 0.9713 |
| 0.0075 | 31.0 | 713 | 0.1907 | 0.9504 | 0.9667 | 0.9585 | 0.9710 |
| 0.0075 | 32.0 | 736 | 0.1904 | 0.9504 | 0.9662 | 0.9582 | 0.9710 |
| 0.008 | 33.0 | 759 | 0.1935 | 0.9508 | 0.9653 | 0.9580 | 0.9705 |
| 0.0071 | 34.0 | 782 | 0.1950 | 0.9486 | 0.9644 | 0.9564 | 0.9700 |
| 0.007 | 35.0 | 805 | 0.1934 | 0.9478 | 0.9644 | 0.9560 | 0.9705 |
| 0.0072 | 36.0 | 828 | 0.1938 | 0.9486 | 0.9653 | 0.9569 | 0.9702 |
| 0.0068 | 37.0 | 851 | 0.1946 | 0.9482 | 0.9649 | 0.9565 | 0.9697 |
| 0.0066 | 38.0 | 874 | 0.1946 | 0.9486 | 0.9653 | 0.9569 | 0.9700 |
| 0.0068 | 39.0 | 897 | 0.1947 | 0.9508 | 0.9658 | 0.9582 | 0.9705 |
| 0.007 | 40.0 | 920 | 0.1942 | 0.9486 | 0.9640 | 0.9562 | 0.9697 |
| 0.0066 | 41.0 | 943 | 0.1937 | 0.9490 | 0.9649 | 0.9569 | 0.9702 |
| 0.0065 | 42.0 | 966 | 0.1943 | 0.9478 | 0.9644 | 0.9560 | 0.9695 |
| 0.0067 | 43.0 | 989 | 0.1936 | 0.9508 | 0.9662 | 0.9584 | 0.9708 |
| 0.0071 | 44.0 | 1012 | 0.1944 | 0.9521 | 0.9667 | 0.9593 | 0.9710 |
| 0.0064 | 45.0 | 1035 | 0.1940 | 0.9517 | 0.9671 | 0.9593 | 0.9713 |
| 0.0063 | 46.0 | 1058 | 0.1938 | 0.9499 | 0.9658 | 0.9578 | 0.9708 |
| 0.0066 | 47.0 | 1081 | 0.1944 | 0.9499 | 0.9658 | 0.9578 | 0.9708 |
| 0.0063 | 48.0 | 1104 | 0.1955 | 0.9495 | 0.9653 | 0.9573 | 0.9705 |
| 0.007 | 49.0 | 1127 | 0.1955 | 0.9495 | 0.9653 | 0.9573 | 0.9705 |
| 0.0063 | 50.0 | 1150 | 0.1954 | 0.9495 | 0.9653 | 0.9573 | 0.9705 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
|