File size: 1,854 Bytes
e8aaaae
 
 
 
561d291
 
e8aaaae
 
 
 
 
 
 
 
 
 
 
 
561d291
 
 
 
 
e8aaaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
561d291
 
 
 
 
 
e8aaaae
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-cvs-estimation-years-experience
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-cvs-estimation-years-experience

This model is a fine-tuned version of [jhonparra18/bert-base-cased-cv-studio_name-medium](https://huggingface.co/jhonparra18/bert-base-cased-cv-studio_name-medium) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 9.4494
- Mse: 9.4494
- Mae: 2.0686
- R2: 0.4131
- Accuracy: 0.2586

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mse     | Mae    | R2     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:--------:|
| No log        | 10.34 | 300  | 10.5131         | 10.5131 | 2.2140 | 0.3470 | 0.2759   |
| 3.3802        | 20.69 | 600  | 9.1915          | 9.1915  | 2.0780 | 0.4291 | 0.2759   |
| 3.3802        | 31.03 | 900  | 8.8261          | 8.8261  | 1.9359 | 0.4518 | 0.2931   |
| 0.1613        | 41.38 | 1200 | 9.4494          | 9.4494  | 2.0686 | 0.4131 | 0.2586   |


### Framework versions

- Transformers 4.21.1
- Pytorch 1.12.0+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1