n8rob commited on
Commit
6b240fb
·
verified ·
1 Parent(s): 4957e91

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -2,7 +2,7 @@
2
  license: mit
3
  ---
4
 
5
- This is a many-to-many model for Creole-English, English-Creole and Creole-Creole MT, fine-tuned on top of facebook/mbart-large-50-many-to-many-mmt, with all data.
6
 
7
  Usage:
8
 
@@ -10,13 +10,13 @@ Usage:
10
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
11
  from transformers import MbartTokenizer, AutoTokenizer
12
 
13
- tokenizer = AutoTokenizer.from_pretrained("n8rob/kreyol-mt", do_lower_case=False, use_fast=False, keep_accents=True)
14
 
15
- # Or use tokenizer = MbartTokenizer.from_pretrained("n8rob/kreyol-mt", use_fast=False)
16
 
17
- model = AutoModelForSeq2SeqLM.from_pretrained("n8rob/kreyol-mt")
18
 
19
- # Or use model = MBartForConditionalGeneration.from_pretrained("n8rob/kreyol-mt")
20
 
21
  # First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> SRCCODE". Similarly, the output should be "TGTCODE Sentence </s>".
22
  # Example: For Saint Lucian Patois to English translation, we need to use language indicator tags: <2acf> and <2eng> where acf represents Saint Lucian Patois and eng represents English.
 
2
  license: mit
3
  ---
4
 
5
+ This is a many-to-many model for Creole-English, English-Creole and Creole-Creole MT, fine-tuned on top of `facebook/mbart-large-50-many-to-many-mmt`, with all data.
6
 
7
  Usage:
8
 
 
10
  from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
11
  from transformers import MbartTokenizer, AutoTokenizer
12
 
13
+ tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/kreyol-mt", do_lower_case=False, use_fast=False, keep_accents=True)
14
 
15
+ # Or use tokenizer = MbartTokenizer.from_pretrained("jhu-clsp/kreyol-mt", use_fast=False)
16
 
17
+ model = AutoModelForSeq2SeqLM.from_pretrained("jhu-clsp/kreyol-mt")
18
 
19
+ # Or use model = MBartForConditionalGeneration.from_pretrained("jhu-clsp/kreyol-mt")
20
 
21
  # First tokenize the input and outputs. The format below is how the model was trained so the input should be "Sentence </s> SRCCODE". Similarly, the output should be "TGTCODE Sentence </s>".
22
  # Example: For Saint Lucian Patois to English translation, we need to use language indicator tags: <2acf> and <2eng> where acf represents Saint Lucian Patois and eng represents English.