orionweller commited on
Commit
ded950e
·
verified ·
1 Parent(s): b5fdf33

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +235 -0
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - jhu-clsp/rank1-training-data
5
+ base_model:
6
+ - jhu-clsp/rank1-7b
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - reranker
10
+ - retrieval
11
+ - quantized
12
+ - awq
13
+ language:
14
+ - en
15
+ ---
16
+
17
+ # rank1-7b-awq: Quantized Model for Test-Time Compute Reranking
18
+
19
+ 📄 [Paper](https://arxiv.org/abs/2502.18418) | 🚀 [GitHub Repository](https://github.com/orionw/rank1)
20
+
21
+ rank1-7b-awq is a quantized version of the rank1-7b model. This AWQ-quantized 7B parameter model maintains the reasoning capabilities of the original model while requiring less memory and providing faster inference. The model is trained from the Qwen2.5-7B base model and leverages test-time compute to generate reasoning chains before deciding if a document is relevant to a query.
22
+
23
+ ## Model Description
24
+
25
+ rank1 introduces a novel approach to information retrieval by generating explicit reasoning chains before making relevance judgments. Unlike traditional rerankers that directly output scores, rank1:
26
+
27
+ 1. Receives a query and document pair
28
+ 2. Generates a reasoning chain within a `<think>...</think>` section
29
+ 3. Makes a binary relevance judgment (`true` or `false`)
30
+ 4. Returns a confidence score based on the logits of the true/false tokens
31
+
32
+ This approach helps the model break down complex relevance decisions into logical steps, improving performance across diverse retrieval tasks.
33
+
34
+ ## Quantization Details
35
+
36
+ This model uses Activation-aware Weight Quantization (AWQ) to reduce the model size while maintaining performance. Compared to the full-precision model, this quantized version:
37
+
38
+ - Requires less GPU memory
39
+ - Offers faster inference times
40
+ - Maintains comparable accuracy on retrieval tasks
41
+
42
+ ## Model Family
43
+
44
+ | Model | Base | Description |
45
+ |:------|:-----|:------------|
46
+ | [rank1-7b](https://huggingface.co/jhu-clsp/rank1-7b) | Qwen2.5-7B | Full-precision version (7B parameters) |
47
+ | [rank1-14b](https://huggingface.co/jhu-clsp/rank1-14b) | Qwen2.5-14B | Larger variant (14B parameters) |
48
+ | [rank1-32b](https://huggingface.co/jhu-clsp/rank1-32b) | Qwen2.5-32B | Largest variant (32B parameters) |
49
+ | [rank1-mistral-2501-24b](https://huggingface.co/jhu-clsp/rank1-mistral-2501-24b) | Mistral-Small 2501 24B | Trained from Mistral base |
50
+ | [rank1-llama3-8b](https://huggingface.co/jhu-clsp/rank1-llama3-8b) | Llama 3.1 8B | Trained from Llama 3.1 base |
51
+
52
+ ### Quantized Variants
53
+
54
+ | Model | Description |
55
+ |:------|:------------|
56
+ | [rank1-7b-awq](https://huggingface.co/jhu-clsp/rank1-7b-awq) | Current model - Quantized version of rank1-7b |
57
+ | [rank1-14b-awq](https://huggingface.co/jhu-clsp/rank1-14b-awq) | Quantized version of rank1-14b |
58
+ | [rank1-32b-awq](https://huggingface.co/jhu-clsp/rank1-32b-awq) | Quantized version of rank1-32b |
59
+ | [rank1-mistral-2501-24b-awq](https://huggingface.co/jhu-clsp/rank1-mistral-2501-24b-awq) | Quantized version of rank1-mistral-24b |
60
+ | [rank1-llama3-8b-awq](https://huggingface.co/jhu-clsp/rank1-llama3-8b-awq) | Quantized version of rank1-llama3-8b |
61
+
62
+ ## Associated Data and Resources
63
+
64
+ | Resource | Description |
65
+ |:---------|:------------|
66
+ | [rank1-r1-msmarco](https://huggingface.co/datasets/jhu-clsp/rank1-r1-msmarco) | All R1 output examples from MS MARCO |
67
+ | [rank1-training-data](https://huggingface.co/datasets/jhu-clsp/rank1-training-data) | Training data used for rank1 models |
68
+ | [rank1-run-files](https://huggingface.co/datasets/jhu-clsp/rank1-run-files) | Pre-computed run files for use in top 100 doc reranking |
69
+ | [GitHub Repository](https://github.com/orionw/rank1) | Official rank1 repository |
70
+
71
+ ## Usage
72
+ Note that official usage is found on the Github and accounts for edge cases. But for simple use cases the minimal example below works.
73
+
74
+ <details>
75
+ <summary>Click to expand: Minimal example with vLLM</summary>
76
+
77
+ ```python
78
+ from vllm import LLM, SamplingParams
79
+ import math
80
+
81
+ # Initialize the model with vLLM
82
+ model = LLM(
83
+ model="jhu-clsp/rank1-7b-awq",
84
+ tensor_parallel_size=1, # Number of GPUs
85
+ trust_remote_code=True,
86
+ max_model_len=16000, # Context length
87
+ gpu_memory_utilization=0.9,
88
+ dtype="auto", # Will use the appropriate quantized dtype
89
+ )
90
+
91
+ # Set up sampling parameters
92
+ sampling_params = SamplingParams(
93
+ temperature=0,
94
+ max_tokens=8192,
95
+ logprobs=20,
96
+ stop=["</think> true", "</think> false"],
97
+ skip_special_tokens=False
98
+ )
99
+
100
+ # Prepare the prompt
101
+ def create_prompt(query, document):
102
+ return (
103
+ "Determine if the following passage is relevant to the query. "
104
+ "Answer only with 'true' or 'false'.\n"
105
+ f"Query: {query}\n"
106
+ f"Passage: {document}\n"
107
+ "<think>"
108
+ )
109
+
110
+ # Example usage
111
+ query = "What are the effects of climate change?"
112
+ document = "Climate change leads to rising sea levels, extreme weather events, and disruptions to ecosystems. These effects are caused by increasing greenhouse gas concentrations in the atmosphere due to human activities."
113
+
114
+ # Generate prediction
115
+ prompt = create_prompt(query, document)
116
+ outputs = model.generate([prompt], sampling_params)
117
+
118
+ # Extract score
119
+ output = outputs[0].outputs[0]
120
+ text = output.text
121
+ final_logits = output.logprobs[-1]
122
+
123
+ # Get token IDs for "true" and "false" tokens
124
+ from transformers import AutoTokenizer
125
+ tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/rank1-7b-awq")
126
+ true_token = tokenizer(" true", add_special_tokens=False).input_ids[0]
127
+ false_token = tokenizer(" false", add_special_tokens=False).input_ids[0]
128
+
129
+ # Calculate relevance score (probability of "true")
130
+ true_logit = final_logits[true_token].logprob
131
+ false_logit = final_logits[false_token].logprob
132
+ true_score = math.exp(true_logit)
133
+ false_score = math.exp(false_logit)
134
+ relevance_score = true_score / (true_score + false_score)
135
+
136
+ print(f"Reasoning chain: {text}")
137
+ print(f"Relevance score: {relevance_score}")
138
+ ```
139
+
140
+ </details>
141
+
142
+ <details>
143
+ <summary>Click to expand: Usage with AutoGPTQ/AWQ</summary>
144
+
145
+ ```python
146
+ from transformers import AutoModelForCausalLM, AutoTokenizer
147
+ import torch
148
+
149
+ # Load the tokenizer and quantized model
150
+ tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/rank1-7b-awq")
151
+ model = AutoModelForCausalLM.from_pretrained(
152
+ "jhu-clsp/rank1-7b-awq",
153
+ device_map="auto",
154
+ trust_remote_code=True
155
+ )
156
+
157
+ # Prepare the prompt
158
+ query = "What are the effects of climate change?"
159
+ document = "Climate change leads to rising sea levels, extreme weather events, and disruptions to ecosystems. These effects are caused by increasing greenhouse gas concentrations in the atmosphere due to human activities."
160
+
161
+ prompt = f"Determine if the following passage is relevant to the query. Answer only with 'true' or 'false'.\nQuery: {query}\nPassage: {document}\n<think>"
162
+
163
+ # Generate the reasoning chain and relevance judgment
164
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
165
+ with torch.no_grad():
166
+ outputs = model.generate(
167
+ **inputs,
168
+ max_new_tokens=512,
169
+ temperature=0.0,
170
+ return_dict_in_generate=True,
171
+ output_scores=True,
172
+ pad_token_id=tokenizer.eos_token_id
173
+ )
174
+
175
+ # Process the output
176
+ generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=False)
177
+ reasoning_chain = generated_text.split("<think>")[1].split("</think>")[0].strip()
178
+ relevance_judgment = "true" if "true" in generated_text.split("</think>")[1].strip().lower() else "false"
179
+
180
+ print(f"Reasoning chain: {reasoning_chain}")
181
+ print(f"Relevance judgment: {relevance_judgment}")
182
+ ```
183
+
184
+ </details>
185
+
186
+ ## Performance
187
+
188
+ rank1-7b-awq demonstrates strong performance on retrieval benchmarks while offering faster inference and lower memory requirements than the full-precision model. The quantization process preserves the model's ability to "think through" relevance decisions, making it effective for nuanced topics.
189
+
190
+ For specific benchmark results and comparisons with other models, please refer to the paper and the official GitHub repository.
191
+
192
+ ## Installation
193
+
194
+ Please see the Github for detailed installation instructions.
195
+
196
+ ## MTEB Integration
197
+
198
+ rank1 is compatible with the [MTEB benchmarking framework](https://github.com/embeddings-benchmark/mteb):
199
+
200
+ ```python
201
+ from mteb import MTEB
202
+ from rank1 import rank1 # From the official repo
203
+
204
+ # Initialize the model
205
+ model = rank1(
206
+ model_name_or_path="jhu-clsp/rank1-7b-awq",
207
+ num_gpus=1,
208
+ device="cuda",
209
+ quantized=True # Indicate that you're using the quantized version
210
+ )
211
+
212
+ # Run evaluation on specific tasks
213
+ evaluation = MTEB(tasks=["NevIR"])
214
+ results = evaluation.run(model)
215
+ ```
216
+
217
+ ## Citation
218
+
219
+ If you use rank1 in your research, please cite our work:
220
+
221
+ ```bibtex
222
+ @misc{weller2025rank1testtimecomputereranking,
223
+ title={Rank1: Test-Time Compute for Reranking in Information Retrieval},
224
+ author={Orion Weller and Kathryn Ricci and Eugene Yang and Andrew Yates and Dawn Lawrie and Benjamin Van Durme},
225
+ year={2025},
226
+ eprint={2502.18418},
227
+ archivePrefix={arXiv},
228
+ primaryClass={cs.IR},
229
+ url={https://arxiv.org/abs/2502.18418},
230
+ }
231
+ ```
232
+
233
+ ## License
234
+
235
+ [MIT License](https://github.com/orionw/rank1/blob/main/LICENSE)