jiagaoxiang
commited on
Upload folder using huggingface_hub
Browse files- config.json +41 -0
- generation_config.json +5 -0
- latest +1 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +203 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +29 -0
- tokenizer.json +0 -0
- tokenizer_config.json +133 -0
- trainer_state.json +664 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "tiiuae/falcon-7b-instruct",
|
3 |
+
"activation": "gelu",
|
4 |
+
"alibi": false,
|
5 |
+
"apply_residual_connection_post_layernorm": false,
|
6 |
+
"architectures": [
|
7 |
+
"FalconForCausalLM"
|
8 |
+
],
|
9 |
+
"attention_dropout": 0.0,
|
10 |
+
"auto_map": {
|
11 |
+
"AutoConfig": "tiiuae/falcon-7b-instruct--configuration_falcon.FalconConfig",
|
12 |
+
"AutoModel": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconModel",
|
13 |
+
"AutoModelForCausalLM": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForCausalLM",
|
14 |
+
"AutoModelForQuestionAnswering": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForQuestionAnswering",
|
15 |
+
"AutoModelForSequenceClassification": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForSequenceClassification",
|
16 |
+
"AutoModelForTokenClassification": "tiiuae/falcon-7b-instruct--modeling_falcon.FalconForTokenClassification"
|
17 |
+
},
|
18 |
+
"bias": false,
|
19 |
+
"bos_token_id": 11,
|
20 |
+
"eos_token_id": 11,
|
21 |
+
"ffn_hidden_size": 18176,
|
22 |
+
"hidden_dropout": 0.0,
|
23 |
+
"hidden_size": 4544,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"layer_norm_epsilon": 1e-05,
|
26 |
+
"max_position_embeddings": 2048,
|
27 |
+
"model_type": "falcon",
|
28 |
+
"multi_query": true,
|
29 |
+
"new_decoder_architecture": false,
|
30 |
+
"num_attention_heads": 71,
|
31 |
+
"num_hidden_layers": 32,
|
32 |
+
"num_kv_heads": 71,
|
33 |
+
"num_ln_in_parallel_attn": null,
|
34 |
+
"parallel_attn": true,
|
35 |
+
"rope_scaling": null,
|
36 |
+
"rope_theta": 10000.0,
|
37 |
+
"torch_dtype": "bfloat16",
|
38 |
+
"transformers_version": "4.45.1",
|
39 |
+
"use_cache": true,
|
40 |
+
"vocab_size": 65024
|
41 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 11,
|
4 |
+
"transformers_version": "4.45.1"
|
5 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step480
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e7b966bff582d322eb2189f06f77359101e2d9fb7e92b11bcd654c1a4dc403f
|
3 |
+
size 4981285848
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d8f59ad80ac20e2e0f228babf6f295b6ff657e524e8b3af3b0e5a297c3ebbc3
|
3 |
+
size 4969690568
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b1fbf83ca56c5b01d5abb52ab5d9dacd6b22f99b7e1ce4c20a5f94682287813
|
3 |
+
size 4483426544
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14434379520
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"transformer.h.0.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
8 |
+
"transformer.h.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"transformer.h.0.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"transformer.h.0.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"transformer.h.0.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"transformer.h.0.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"transformer.h.1.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
14 |
+
"transformer.h.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"transformer.h.1.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"transformer.h.1.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"transformer.h.1.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"transformer.h.1.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"transformer.h.10.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
20 |
+
"transformer.h.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
21 |
+
"transformer.h.10.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
22 |
+
"transformer.h.10.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"transformer.h.10.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"transformer.h.10.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"transformer.h.11.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
26 |
+
"transformer.h.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"transformer.h.11.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"transformer.h.11.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
29 |
+
"transformer.h.11.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"transformer.h.11.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"transformer.h.12.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
32 |
+
"transformer.h.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
33 |
+
"transformer.h.12.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
34 |
+
"transformer.h.12.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"transformer.h.12.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"transformer.h.12.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"transformer.h.13.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
38 |
+
"transformer.h.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"transformer.h.13.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"transformer.h.13.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"transformer.h.13.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"transformer.h.13.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"transformer.h.14.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
44 |
+
"transformer.h.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"transformer.h.14.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"transformer.h.14.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"transformer.h.14.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"transformer.h.14.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"transformer.h.15.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
50 |
+
"transformer.h.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"transformer.h.15.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"transformer.h.15.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"transformer.h.15.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"transformer.h.15.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"transformer.h.16.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
56 |
+
"transformer.h.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"transformer.h.16.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"transformer.h.16.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"transformer.h.16.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"transformer.h.16.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"transformer.h.17.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
62 |
+
"transformer.h.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"transformer.h.17.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"transformer.h.17.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"transformer.h.17.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"transformer.h.17.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"transformer.h.18.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
68 |
+
"transformer.h.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"transformer.h.18.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"transformer.h.18.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"transformer.h.18.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"transformer.h.18.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"transformer.h.19.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
74 |
+
"transformer.h.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"transformer.h.19.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"transformer.h.19.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"transformer.h.19.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"transformer.h.19.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"transformer.h.2.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
80 |
+
"transformer.h.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
81 |
+
"transformer.h.2.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
82 |
+
"transformer.h.2.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
83 |
+
"transformer.h.2.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
84 |
+
"transformer.h.2.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
85 |
+
"transformer.h.20.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
86 |
+
"transformer.h.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"transformer.h.20.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"transformer.h.20.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"transformer.h.20.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"transformer.h.20.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"transformer.h.21.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
92 |
+
"transformer.h.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"transformer.h.21.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"transformer.h.21.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"transformer.h.21.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"transformer.h.21.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"transformer.h.22.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
98 |
+
"transformer.h.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
99 |
+
"transformer.h.22.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
100 |
+
"transformer.h.22.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"transformer.h.22.self_attention.dense.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"transformer.h.22.self_attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"transformer.h.23.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
104 |
+
"transformer.h.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
105 |
+
"transformer.h.23.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
106 |
+
"transformer.h.23.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
107 |
+
"transformer.h.23.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
108 |
+
"transformer.h.23.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
109 |
+
"transformer.h.24.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
110 |
+
"transformer.h.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
111 |
+
"transformer.h.24.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
112 |
+
"transformer.h.24.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
113 |
+
"transformer.h.24.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
114 |
+
"transformer.h.24.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
115 |
+
"transformer.h.25.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
116 |
+
"transformer.h.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
117 |
+
"transformer.h.25.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
118 |
+
"transformer.h.25.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
119 |
+
"transformer.h.25.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
120 |
+
"transformer.h.25.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
121 |
+
"transformer.h.26.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
122 |
+
"transformer.h.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
123 |
+
"transformer.h.26.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
124 |
+
"transformer.h.26.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
125 |
+
"transformer.h.26.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
126 |
+
"transformer.h.26.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
127 |
+
"transformer.h.27.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
128 |
+
"transformer.h.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
129 |
+
"transformer.h.27.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
130 |
+
"transformer.h.27.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
131 |
+
"transformer.h.27.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
132 |
+
"transformer.h.27.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
133 |
+
"transformer.h.28.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
134 |
+
"transformer.h.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
135 |
+
"transformer.h.28.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
136 |
+
"transformer.h.28.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
137 |
+
"transformer.h.28.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
138 |
+
"transformer.h.28.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
139 |
+
"transformer.h.29.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
140 |
+
"transformer.h.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
141 |
+
"transformer.h.29.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
142 |
+
"transformer.h.29.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
143 |
+
"transformer.h.29.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"transformer.h.29.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"transformer.h.3.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
146 |
+
"transformer.h.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
147 |
+
"transformer.h.3.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
148 |
+
"transformer.h.3.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
149 |
+
"transformer.h.3.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
150 |
+
"transformer.h.3.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
151 |
+
"transformer.h.30.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
152 |
+
"transformer.h.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"transformer.h.30.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"transformer.h.30.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"transformer.h.30.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"transformer.h.30.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"transformer.h.31.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
158 |
+
"transformer.h.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"transformer.h.31.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"transformer.h.31.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"transformer.h.31.self_attention.dense.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"transformer.h.31.self_attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"transformer.h.4.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
164 |
+
"transformer.h.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
165 |
+
"transformer.h.4.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
166 |
+
"transformer.h.4.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
167 |
+
"transformer.h.4.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
168 |
+
"transformer.h.4.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
169 |
+
"transformer.h.5.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
170 |
+
"transformer.h.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
171 |
+
"transformer.h.5.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
172 |
+
"transformer.h.5.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
173 |
+
"transformer.h.5.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
174 |
+
"transformer.h.5.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
175 |
+
"transformer.h.6.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
176 |
+
"transformer.h.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
177 |
+
"transformer.h.6.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
178 |
+
"transformer.h.6.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
179 |
+
"transformer.h.6.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
180 |
+
"transformer.h.6.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
181 |
+
"transformer.h.7.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
182 |
+
"transformer.h.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
183 |
+
"transformer.h.7.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
184 |
+
"transformer.h.7.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
185 |
+
"transformer.h.7.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
186 |
+
"transformer.h.7.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
187 |
+
"transformer.h.8.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
188 |
+
"transformer.h.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
189 |
+
"transformer.h.8.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
190 |
+
"transformer.h.8.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
191 |
+
"transformer.h.8.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
192 |
+
"transformer.h.8.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
193 |
+
"transformer.h.9.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
194 |
+
"transformer.h.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
195 |
+
"transformer.h.9.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
196 |
+
"transformer.h.9.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
197 |
+
"transformer.h.9.self_attention.dense.weight": "model-00001-of-00003.safetensors",
|
198 |
+
"transformer.h.9.self_attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
199 |
+
"transformer.ln_f.bias": "model-00003-of-00003.safetensors",
|
200 |
+
"transformer.ln_f.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"transformer.word_embeddings.weight": "model-00001-of-00003.safetensors"
|
202 |
+
}
|
203 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5abc34b6d0dc608f3654837e221e4ba15d095c0c788de8f9d4277ee4b7e119fd
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09b2703c1559eab4e3bedeb2a0f74a128e58cc86a3f8f9666598c059ff24e1be
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff20ecceb303d1259f393e969a39543142d33bab675619dcafcc0a65093fa41e
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83e04e9cff789f30b285102bcb5f30bcb5ebe2f51c9ecb75d386fde2b8f99099
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29a447e8ea4f441d05802f3782c4615a89a0f1f1f0278c11e2c1d4402c9a9b7a
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d8a64a2ad1753e3243e0c8e0acceab279a10aa33bdfe59212f4fcecaa9c47d9
|
3 |
+
size 15920
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f2ab943cede33be591ebd8debe4937c16fa2a023a33c92df7d256d3ff9ae316
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7d7bd1a59bf1edb67e465884fe24f9755abbc69e5a12c88c8b9230102086355
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f96e51d21bd60c436e569219e3e3ccfe83740e983c762f708d2b84cade383d45
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
">>TITLE<<",
|
4 |
+
">>ABSTRACT<<",
|
5 |
+
">>INTRODUCTION<<",
|
6 |
+
">>SUMMARY<<",
|
7 |
+
">>COMMENT<<",
|
8 |
+
">>ANSWER<<",
|
9 |
+
">>QUESTION<<",
|
10 |
+
">>DOMAIN<<",
|
11 |
+
">>PREFIX<<",
|
12 |
+
">>SUFFIX<<",
|
13 |
+
">>MIDDLE<<"
|
14 |
+
],
|
15 |
+
"eos_token": {
|
16 |
+
"content": "<|endoftext|>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": false,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"pad_token": {
|
23 |
+
"content": "[PAD]",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
}
|
29 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": ">>TITLE<<",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": ">>ABSTRACT<<",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": ">>INTRODUCTION<<",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": ">>SUMMARY<<",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": ">>COMMENT<<",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": ">>ANSWER<<",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": ">>QUESTION<<",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": ">>DOMAIN<<",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": ">>PREFIX<<",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": ">>SUFFIX<<",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": ">>MIDDLE<<",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<|endoftext|>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"65024": {
|
101 |
+
"content": "[PAD]",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
}
|
108 |
+
},
|
109 |
+
"additional_special_tokens": [
|
110 |
+
">>TITLE<<",
|
111 |
+
">>ABSTRACT<<",
|
112 |
+
">>INTRODUCTION<<",
|
113 |
+
">>SUMMARY<<",
|
114 |
+
">>COMMENT<<",
|
115 |
+
">>ANSWER<<",
|
116 |
+
">>QUESTION<<",
|
117 |
+
">>DOMAIN<<",
|
118 |
+
">>PREFIX<<",
|
119 |
+
">>SUFFIX<<",
|
120 |
+
">>MIDDLE<<"
|
121 |
+
],
|
122 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = '' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 %}{{ system_message.strip() }}{% endif %}{% if message['role'] == 'user' %}{{ '\n\nUser: ' + message['content'].strip().replace('\r\n', '\n').replace('\n\n', '\n') }}{% elif message['role'] == 'assistant' %}{{ '\n\nAssistant: ' + message['content'].strip().replace('\r\n', '\n').replace('\n\n', '\n') }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '\n\nAssistant:' }}{% endif %}",
|
123 |
+
"clean_up_tokenization_spaces": false,
|
124 |
+
"eos_token": "<|endoftext|>",
|
125 |
+
"model_input_names": [
|
126 |
+
"input_ids",
|
127 |
+
"attention_mask"
|
128 |
+
],
|
129 |
+
"model_max_length": 2048,
|
130 |
+
"pad_token": "[PAD]",
|
131 |
+
"padding_side": "left",
|
132 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
133 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"episode": 7680,
|
5 |
+
"epoch": 0.10533967931748667,
|
6 |
+
"eval_steps": 200.0,
|
7 |
+
"global_step": 150,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"episode": 256,
|
14 |
+
"epoch": 0.003511322643916222,
|
15 |
+
"eps": 6,
|
16 |
+
"loss/policy_avg": -0.07090990990400314,
|
17 |
+
"loss/value_avg": 0.0,
|
18 |
+
"lr": 3e-06,
|
19 |
+
"objective/entropy": 49.42120361328125,
|
20 |
+
"objective/kl": 0.006465356796979904,
|
21 |
+
"objective/non_score_reward": -0.000646535714622587,
|
22 |
+
"objective/rlhf_reward": -1.1137903928756714,
|
23 |
+
"objective/scores": -1.109375,
|
24 |
+
"policy/approxkl_avg": 27.096786499023438,
|
25 |
+
"policy/clipfrac_avg": 0.732421875,
|
26 |
+
"policy/entropy_avg": 0.92181396484375,
|
27 |
+
"step": 5,
|
28 |
+
"val/clipfrac_avg": 0.0,
|
29 |
+
"val/num_eos_tokens": 12,
|
30 |
+
"val/ratio": 1.0399832725524902,
|
31 |
+
"val/ratio_var": 0.010045886039733887
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"episode": 512,
|
35 |
+
"epoch": 0.007022645287832444,
|
36 |
+
"eps": 6,
|
37 |
+
"loss/policy_avg": -0.06497187167406082,
|
38 |
+
"loss/value_avg": 0.0,
|
39 |
+
"lr": 2.9923273657289e-06,
|
40 |
+
"objective/entropy": 48.286014556884766,
|
41 |
+
"objective/kl": 0.8119473457336426,
|
42 |
+
"objective/non_score_reward": -0.08119472861289978,
|
43 |
+
"objective/rlhf_reward": -1.266162633895874,
|
44 |
+
"objective/scores": -1.1875,
|
45 |
+
"policy/approxkl_avg": 18.666072845458984,
|
46 |
+
"policy/clipfrac_avg": 0.7314453125,
|
47 |
+
"policy/entropy_avg": 0.912261962890625,
|
48 |
+
"step": 10,
|
49 |
+
"val/clipfrac_avg": 0.0,
|
50 |
+
"val/num_eos_tokens": 16,
|
51 |
+
"val/ratio": 1.020957112312317,
|
52 |
+
"val/ratio_var": 0.00411860179156065
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"episode": 768,
|
56 |
+
"epoch": 0.010533967931748666,
|
57 |
+
"eps": 6,
|
58 |
+
"loss/policy_avg": -0.0872286781668663,
|
59 |
+
"loss/value_avg": 0.0,
|
60 |
+
"lr": 2.9846547314578008e-06,
|
61 |
+
"objective/entropy": 49.34376525878906,
|
62 |
+
"objective/kl": 1.9591996669769287,
|
63 |
+
"objective/non_score_reward": -0.1959199756383896,
|
64 |
+
"objective/rlhf_reward": -1.2858657836914062,
|
65 |
+
"objective/scores": -1.09375,
|
66 |
+
"policy/approxkl_avg": 20.772502899169922,
|
67 |
+
"policy/clipfrac_avg": 0.73828125,
|
68 |
+
"policy/entropy_avg": 0.927978515625,
|
69 |
+
"step": 15,
|
70 |
+
"val/clipfrac_avg": 0.0,
|
71 |
+
"val/num_eos_tokens": 12,
|
72 |
+
"val/ratio": 1.0191609859466553,
|
73 |
+
"val/ratio_var": 0.00307083735242486
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"episode": 1024,
|
77 |
+
"epoch": 0.014045290575664887,
|
78 |
+
"eps": 6,
|
79 |
+
"loss/policy_avg": -0.07566041499376297,
|
80 |
+
"loss/value_avg": 0.0,
|
81 |
+
"lr": 2.9769820971867007e-06,
|
82 |
+
"objective/entropy": 53.13662338256836,
|
83 |
+
"objective/kl": 2.4811532497406006,
|
84 |
+
"objective/non_score_reward": -0.24811533093452454,
|
85 |
+
"objective/rlhf_reward": -1.2548893690109253,
|
86 |
+
"objective/scores": -1.0078125,
|
87 |
+
"policy/approxkl_avg": 20.665164947509766,
|
88 |
+
"policy/clipfrac_avg": 0.7314453125,
|
89 |
+
"policy/entropy_avg": 0.989776611328125,
|
90 |
+
"step": 20,
|
91 |
+
"val/clipfrac_avg": 0.0,
|
92 |
+
"val/num_eos_tokens": 11,
|
93 |
+
"val/ratio": 1.011010766029358,
|
94 |
+
"val/ratio_var": 0.004201602190732956
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"episode": 1280,
|
98 |
+
"epoch": 0.01755661321958111,
|
99 |
+
"eps": 6,
|
100 |
+
"loss/policy_avg": -0.08593496680259705,
|
101 |
+
"loss/value_avg": 0.0,
|
102 |
+
"lr": 2.9693094629156014e-06,
|
103 |
+
"objective/entropy": 53.72633743286133,
|
104 |
+
"objective/kl": 3.3111624717712402,
|
105 |
+
"objective/non_score_reward": -0.3311161994934082,
|
106 |
+
"objective/rlhf_reward": -1.339456558227539,
|
107 |
+
"objective/scores": -1.0078125,
|
108 |
+
"policy/approxkl_avg": 25.559288024902344,
|
109 |
+
"policy/clipfrac_avg": 0.7353515625,
|
110 |
+
"policy/entropy_avg": 0.997894287109375,
|
111 |
+
"step": 25,
|
112 |
+
"val/clipfrac_avg": 0.0,
|
113 |
+
"val/num_eos_tokens": 13,
|
114 |
+
"val/ratio": 1.0134021043777466,
|
115 |
+
"val/ratio_var": 0.0019979747012257576
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"episode": 1536,
|
119 |
+
"epoch": 0.021067935863497332,
|
120 |
+
"eps": 6,
|
121 |
+
"loss/policy_avg": -0.09734417498111725,
|
122 |
+
"loss/value_avg": 0.0,
|
123 |
+
"lr": 2.9616368286445014e-06,
|
124 |
+
"objective/entropy": 51.259735107421875,
|
125 |
+
"objective/kl": 5.089182376861572,
|
126 |
+
"objective/non_score_reward": -0.5089181661605835,
|
127 |
+
"objective/rlhf_reward": -1.2202520370483398,
|
128 |
+
"objective/scores": -0.7109375,
|
129 |
+
"policy/approxkl_avg": 29.841636657714844,
|
130 |
+
"policy/clipfrac_avg": 0.736328125,
|
131 |
+
"policy/entropy_avg": 0.960479736328125,
|
132 |
+
"step": 30,
|
133 |
+
"val/clipfrac_avg": 0.0,
|
134 |
+
"val/num_eos_tokens": 26,
|
135 |
+
"val/ratio": 1.0178756713867188,
|
136 |
+
"val/ratio_var": 0.009866585955023766
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"episode": 1792,
|
140 |
+
"epoch": 0.024579258507413555,
|
141 |
+
"eps": 6,
|
142 |
+
"loss/policy_avg": -0.06831618398427963,
|
143 |
+
"loss/value_avg": 0.0,
|
144 |
+
"lr": 2.9539641943734013e-06,
|
145 |
+
"objective/entropy": 40.643272399902344,
|
146 |
+
"objective/kl": 6.974010944366455,
|
147 |
+
"objective/non_score_reward": -0.6974011063575745,
|
148 |
+
"objective/rlhf_reward": -1.2684605121612549,
|
149 |
+
"objective/scores": -0.5703125,
|
150 |
+
"policy/approxkl_avg": 35.33942413330078,
|
151 |
+
"policy/clipfrac_avg": 0.6982421875,
|
152 |
+
"policy/entropy_avg": 0.7505035400390625,
|
153 |
+
"step": 35,
|
154 |
+
"val/clipfrac_avg": 0.0,
|
155 |
+
"val/num_eos_tokens": 16,
|
156 |
+
"val/ratio": 1.00449800491333,
|
157 |
+
"val/ratio_var": 0.0022142010275274515
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"episode": 2048,
|
161 |
+
"epoch": 0.028090581151329775,
|
162 |
+
"eps": 6,
|
163 |
+
"loss/policy_avg": -0.04068079590797424,
|
164 |
+
"loss/value_avg": 0.0,
|
165 |
+
"lr": 2.946291560102302e-06,
|
166 |
+
"objective/entropy": 23.142562866210938,
|
167 |
+
"objective/kl": 8.180486679077148,
|
168 |
+
"objective/non_score_reward": -0.8180487155914307,
|
169 |
+
"objective/rlhf_reward": -1.0729957818984985,
|
170 |
+
"objective/scores": -0.255859375,
|
171 |
+
"policy/approxkl_avg": 23.68307876586914,
|
172 |
+
"policy/clipfrac_avg": 0.5859375,
|
173 |
+
"policy/entropy_avg": 0.4361400604248047,
|
174 |
+
"step": 40,
|
175 |
+
"val/clipfrac_avg": 0.0,
|
176 |
+
"val/num_eos_tokens": 8,
|
177 |
+
"val/ratio": 1.0077030658721924,
|
178 |
+
"val/ratio_var": 0.0024766812566667795
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"episode": 2304,
|
182 |
+
"epoch": 0.031601903795246,
|
183 |
+
"eps": 6,
|
184 |
+
"loss/policy_avg": -0.07307010889053345,
|
185 |
+
"loss/value_avg": 0.0,
|
186 |
+
"lr": 2.938618925831202e-06,
|
187 |
+
"objective/entropy": 19.376842498779297,
|
188 |
+
"objective/kl": 8.770210266113281,
|
189 |
+
"objective/non_score_reward": -0.8770210146903992,
|
190 |
+
"objective/rlhf_reward": -1.0002652406692505,
|
191 |
+
"objective/scores": -0.12353515625,
|
192 |
+
"policy/approxkl_avg": 31.00873565673828,
|
193 |
+
"policy/clipfrac_avg": 0.5302734375,
|
194 |
+
"policy/entropy_avg": 0.33237457275390625,
|
195 |
+
"step": 45,
|
196 |
+
"val/clipfrac_avg": 0.0,
|
197 |
+
"val/num_eos_tokens": 20,
|
198 |
+
"val/ratio": 0.996111273765564,
|
199 |
+
"val/ratio_var": 0.001100091845728457
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"episode": 2560,
|
203 |
+
"epoch": 0.03511322643916222,
|
204 |
+
"eps": 6,
|
205 |
+
"loss/policy_avg": -0.04584116116166115,
|
206 |
+
"loss/value_avg": 0.0,
|
207 |
+
"lr": 2.9309462915601027e-06,
|
208 |
+
"objective/entropy": 11.984097480773926,
|
209 |
+
"objective/kl": 8.4966402053833,
|
210 |
+
"objective/non_score_reward": -0.849664032459259,
|
211 |
+
"objective/rlhf_reward": -0.8017911911010742,
|
212 |
+
"objective/scores": 0.0478515625,
|
213 |
+
"policy/approxkl_avg": 22.561037063598633,
|
214 |
+
"policy/clipfrac_avg": 0.451171875,
|
215 |
+
"policy/entropy_avg": 0.19393539428710938,
|
216 |
+
"step": 50,
|
217 |
+
"val/clipfrac_avg": 0.0,
|
218 |
+
"val/num_eos_tokens": 20,
|
219 |
+
"val/ratio": 0.9952375888824463,
|
220 |
+
"val/ratio_var": 0.000761833623982966
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"episode": 2816,
|
224 |
+
"epoch": 0.03862454908307844,
|
225 |
+
"eps": 5,
|
226 |
+
"loss/policy_avg": -0.029720915481448174,
|
227 |
+
"loss/value_avg": 0.0,
|
228 |
+
"lr": 2.9232736572890026e-06,
|
229 |
+
"objective/entropy": 4.9489898681640625,
|
230 |
+
"objective/kl": 8.733837127685547,
|
231 |
+
"objective/non_score_reward": -0.8733837604522705,
|
232 |
+
"objective/rlhf_reward": -0.7492713928222656,
|
233 |
+
"objective/scores": 0.1240234375,
|
234 |
+
"policy/approxkl_avg": 16.253189086914062,
|
235 |
+
"policy/clipfrac_avg": 0.341796875,
|
236 |
+
"policy/entropy_avg": 0.07728099822998047,
|
237 |
+
"step": 55,
|
238 |
+
"val/clipfrac_avg": 0.0,
|
239 |
+
"val/num_eos_tokens": 18,
|
240 |
+
"val/ratio": 0.9972053170204163,
|
241 |
+
"val/ratio_var": 0.00032430028659291565
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"episode": 3072,
|
245 |
+
"epoch": 0.042135871726994664,
|
246 |
+
"eps": 5,
|
247 |
+
"loss/policy_avg": -0.01298562902957201,
|
248 |
+
"loss/value_avg": 0.0,
|
249 |
+
"lr": 2.9156010230179026e-06,
|
250 |
+
"objective/entropy": 1.3101667165756226,
|
251 |
+
"objective/kl": 8.699792861938477,
|
252 |
+
"objective/non_score_reward": -0.8699792623519897,
|
253 |
+
"objective/rlhf_reward": -0.5752952098846436,
|
254 |
+
"objective/scores": 0.294921875,
|
255 |
+
"policy/approxkl_avg": 2.27925968170166,
|
256 |
+
"policy/clipfrac_avg": 0.236328125,
|
257 |
+
"policy/entropy_avg": 0.02513742446899414,
|
258 |
+
"step": 60,
|
259 |
+
"val/clipfrac_avg": 0.0,
|
260 |
+
"val/num_eos_tokens": 20,
|
261 |
+
"val/ratio": 1.0017118453979492,
|
262 |
+
"val/ratio_var": 0.00016639505338389426
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"episode": 3328,
|
266 |
+
"epoch": 0.04564719437091089,
|
267 |
+
"eps": 5,
|
268 |
+
"loss/policy_avg": -0.02618303708732128,
|
269 |
+
"loss/value_avg": 0.0,
|
270 |
+
"lr": 2.9079283887468033e-06,
|
271 |
+
"objective/entropy": 2.3685269355773926,
|
272 |
+
"objective/kl": 9.208517074584961,
|
273 |
+
"objective/non_score_reward": -0.9208516478538513,
|
274 |
+
"objective/rlhf_reward": -0.5182289481163025,
|
275 |
+
"objective/scores": 0.40234375,
|
276 |
+
"policy/approxkl_avg": 2.6189699172973633,
|
277 |
+
"policy/clipfrac_avg": 0.310546875,
|
278 |
+
"policy/entropy_avg": 0.04020071029663086,
|
279 |
+
"step": 65,
|
280 |
+
"val/clipfrac_avg": 0.0,
|
281 |
+
"val/num_eos_tokens": 20,
|
282 |
+
"val/ratio": 1.003983497619629,
|
283 |
+
"val/ratio_var": 0.0009448421187698841
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"episode": 3584,
|
287 |
+
"epoch": 0.04915851701482711,
|
288 |
+
"eps": 5,
|
289 |
+
"loss/policy_avg": -0.02327096462249756,
|
290 |
+
"loss/value_avg": 0.0,
|
291 |
+
"lr": 2.9002557544757032e-06,
|
292 |
+
"objective/entropy": 2.0416018962860107,
|
293 |
+
"objective/kl": 9.701976776123047,
|
294 |
+
"objective/non_score_reward": -0.9701976776123047,
|
295 |
+
"objective/rlhf_reward": -0.49486449360847473,
|
296 |
+
"objective/scores": 0.474609375,
|
297 |
+
"policy/approxkl_avg": 1.271956443786621,
|
298 |
+
"policy/clipfrac_avg": 0.2734375,
|
299 |
+
"policy/entropy_avg": 0.041253089904785156,
|
300 |
+
"step": 70,
|
301 |
+
"val/clipfrac_avg": 0.0,
|
302 |
+
"val/num_eos_tokens": 16,
|
303 |
+
"val/ratio": 1.0039558410644531,
|
304 |
+
"val/ratio_var": 0.00041477559716440737
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"episode": 3840,
|
308 |
+
"epoch": 0.052669839658743334,
|
309 |
+
"eps": 5,
|
310 |
+
"loss/policy_avg": -0.033096276223659515,
|
311 |
+
"loss/value_avg": 0.0,
|
312 |
+
"lr": 2.892583120204604e-06,
|
313 |
+
"objective/entropy": 2.7795495986938477,
|
314 |
+
"objective/kl": 10.028523445129395,
|
315 |
+
"objective/non_score_reward": -1.0028523206710815,
|
316 |
+
"objective/rlhf_reward": -0.46555712819099426,
|
317 |
+
"objective/scores": 0.5390625,
|
318 |
+
"policy/approxkl_avg": 3.055203676223755,
|
319 |
+
"policy/clipfrac_avg": 0.3427734375,
|
320 |
+
"policy/entropy_avg": 0.053270816802978516,
|
321 |
+
"step": 75,
|
322 |
+
"val/clipfrac_avg": 0.0,
|
323 |
+
"val/num_eos_tokens": 23,
|
324 |
+
"val/ratio": 1.0012407302856445,
|
325 |
+
"val/ratio_var": 0.00011274257121840492
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"episode": 4096,
|
329 |
+
"epoch": 0.05618116230265955,
|
330 |
+
"eps": 5,
|
331 |
+
"loss/policy_avg": -0.01961323618888855,
|
332 |
+
"loss/value_avg": 0.0,
|
333 |
+
"lr": 2.884910485933504e-06,
|
334 |
+
"objective/entropy": 2.5525641441345215,
|
335 |
+
"objective/kl": 10.111019134521484,
|
336 |
+
"objective/non_score_reward": -1.0111019611358643,
|
337 |
+
"objective/rlhf_reward": -0.510233461856842,
|
338 |
+
"objective/scores": 0.5,
|
339 |
+
"policy/approxkl_avg": 1.331697940826416,
|
340 |
+
"policy/clipfrac_avg": 0.2861328125,
|
341 |
+
"policy/entropy_avg": 0.048857688903808594,
|
342 |
+
"step": 80,
|
343 |
+
"val/clipfrac_avg": 0.0,
|
344 |
+
"val/num_eos_tokens": 25,
|
345 |
+
"val/ratio": 1.011049509048462,
|
346 |
+
"val/ratio_var": 0.004252108279615641
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"episode": 4352,
|
350 |
+
"epoch": 0.05969248494657577,
|
351 |
+
"eps": 5,
|
352 |
+
"loss/policy_avg": -0.009127877652645111,
|
353 |
+
"loss/value_avg": 0.0,
|
354 |
+
"lr": 2.877237851662404e-06,
|
355 |
+
"objective/entropy": 3.016789674758911,
|
356 |
+
"objective/kl": 11.257818222045898,
|
357 |
+
"objective/non_score_reward": -1.125781774520874,
|
358 |
+
"objective/rlhf_reward": -0.4276960492134094,
|
359 |
+
"objective/scores": 0.69921875,
|
360 |
+
"policy/approxkl_avg": 1.4772686958312988,
|
361 |
+
"policy/clipfrac_avg": 0.35546875,
|
362 |
+
"policy/entropy_avg": 0.053719520568847656,
|
363 |
+
"step": 85,
|
364 |
+
"val/clipfrac_avg": 0.0,
|
365 |
+
"val/num_eos_tokens": 6,
|
366 |
+
"val/ratio": 1.0042904615402222,
|
367 |
+
"val/ratio_var": 0.0008556774700991809
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"episode": 4608,
|
371 |
+
"epoch": 0.063203807590492,
|
372 |
+
"eps": 5,
|
373 |
+
"loss/policy_avg": -0.025049656629562378,
|
374 |
+
"loss/value_avg": 0.0,
|
375 |
+
"lr": 2.8695652173913046e-06,
|
376 |
+
"objective/entropy": 2.5907459259033203,
|
377 |
+
"objective/kl": 10.457273483276367,
|
378 |
+
"objective/non_score_reward": -1.0457274913787842,
|
379 |
+
"objective/rlhf_reward": -0.3816419839859009,
|
380 |
+
"objective/scores": 0.6640625,
|
381 |
+
"policy/approxkl_avg": 2.3460922241210938,
|
382 |
+
"policy/clipfrac_avg": 0.322265625,
|
383 |
+
"policy/entropy_avg": 0.04626178741455078,
|
384 |
+
"step": 90,
|
385 |
+
"val/clipfrac_avg": 0.0,
|
386 |
+
"val/num_eos_tokens": 11,
|
387 |
+
"val/ratio": 1.0003862380981445,
|
388 |
+
"val/ratio_var": 7.93520302977413e-05
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"episode": 4864,
|
392 |
+
"epoch": 0.06671513023440821,
|
393 |
+
"eps": 5,
|
394 |
+
"loss/policy_avg": -0.01828361675143242,
|
395 |
+
"loss/value_avg": 0.0,
|
396 |
+
"lr": 2.8618925831202045e-06,
|
397 |
+
"objective/entropy": 2.397810220718384,
|
398 |
+
"objective/kl": 10.732559204101562,
|
399 |
+
"objective/non_score_reward": -1.073256015777588,
|
400 |
+
"objective/rlhf_reward": -0.35966813564300537,
|
401 |
+
"objective/scores": 0.71484375,
|
402 |
+
"policy/approxkl_avg": 1.1093428134918213,
|
403 |
+
"policy/clipfrac_avg": 0.32421875,
|
404 |
+
"policy/entropy_avg": 0.041881561279296875,
|
405 |
+
"step": 95,
|
406 |
+
"val/clipfrac_avg": 0.0,
|
407 |
+
"val/num_eos_tokens": 15,
|
408 |
+
"val/ratio": 1.0054664611816406,
|
409 |
+
"val/ratio_var": 0.0017973663052543998
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"episode": 5120,
|
413 |
+
"epoch": 0.07022645287832444,
|
414 |
+
"eps": 5,
|
415 |
+
"loss/policy_avg": -0.04088423401117325,
|
416 |
+
"loss/value_avg": 0.0,
|
417 |
+
"lr": 2.8542199488491053e-06,
|
418 |
+
"objective/entropy": 2.343449592590332,
|
419 |
+
"objective/kl": 11.780994415283203,
|
420 |
+
"objective/non_score_reward": -1.1780993938446045,
|
421 |
+
"objective/rlhf_reward": -0.4628324806690216,
|
422 |
+
"objective/scores": 0.71484375,
|
423 |
+
"policy/approxkl_avg": 0.894420325756073,
|
424 |
+
"policy/clipfrac_avg": 0.46875,
|
425 |
+
"policy/entropy_avg": 0.04486083984375,
|
426 |
+
"step": 100,
|
427 |
+
"val/clipfrac_avg": 0.0,
|
428 |
+
"val/num_eos_tokens": 11,
|
429 |
+
"val/ratio": 1.0009559392929077,
|
430 |
+
"val/ratio_var": 4.804596756002866e-05
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"episode": 5376,
|
434 |
+
"epoch": 0.07373777552224066,
|
435 |
+
"eps": 5,
|
436 |
+
"loss/policy_avg": -0.020697183907032013,
|
437 |
+
"loss/value_avg": 0.0,
|
438 |
+
"lr": 2.846547314578005e-06,
|
439 |
+
"objective/entropy": 1.9023351669311523,
|
440 |
+
"objective/kl": 10.29288101196289,
|
441 |
+
"objective/non_score_reward": -1.0292882919311523,
|
442 |
+
"objective/rlhf_reward": -0.29047834873199463,
|
443 |
+
"objective/scores": 0.73828125,
|
444 |
+
"policy/approxkl_avg": 0.9143690466880798,
|
445 |
+
"policy/clipfrac_avg": 0.373046875,
|
446 |
+
"policy/entropy_avg": 0.028568267822265625,
|
447 |
+
"step": 105,
|
448 |
+
"val/clipfrac_avg": 0.0,
|
449 |
+
"val/num_eos_tokens": 10,
|
450 |
+
"val/ratio": 1.000715732574463,
|
451 |
+
"val/ratio_var": 4.201457340968773e-05
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"episode": 5632,
|
455 |
+
"epoch": 0.07724909816615688,
|
456 |
+
"eps": 5,
|
457 |
+
"loss/policy_avg": -0.012633640319108963,
|
458 |
+
"loss/value_avg": 0.0,
|
459 |
+
"lr": 2.8388746803069055e-06,
|
460 |
+
"objective/entropy": 1.3839142322540283,
|
461 |
+
"objective/kl": 10.57151985168457,
|
462 |
+
"objective/non_score_reward": -1.0571520328521729,
|
463 |
+
"objective/rlhf_reward": -0.2935946583747864,
|
464 |
+
"objective/scores": 0.765625,
|
465 |
+
"policy/approxkl_avg": 0.6525547504425049,
|
466 |
+
"policy/clipfrac_avg": 0.2646484375,
|
467 |
+
"policy/entropy_avg": 0.0345916748046875,
|
468 |
+
"step": 110,
|
469 |
+
"val/clipfrac_avg": 0.0,
|
470 |
+
"val/num_eos_tokens": 10,
|
471 |
+
"val/ratio": 0.9999199509620667,
|
472 |
+
"val/ratio_var": 2.6978697860613465e-05
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"episode": 5888,
|
476 |
+
"epoch": 0.0807604208100731,
|
477 |
+
"eps": 5,
|
478 |
+
"loss/policy_avg": -0.026668714359402657,
|
479 |
+
"loss/value_avg": 0.0,
|
480 |
+
"lr": 2.831202046035806e-06,
|
481 |
+
"objective/entropy": 2.17741322517395,
|
482 |
+
"objective/kl": 11.39688491821289,
|
483 |
+
"objective/non_score_reward": -1.139688491821289,
|
484 |
+
"objective/rlhf_reward": -0.3027456998825073,
|
485 |
+
"objective/scores": 0.8359375,
|
486 |
+
"policy/approxkl_avg": 8.829752922058105,
|
487 |
+
"policy/clipfrac_avg": 0.35546875,
|
488 |
+
"policy/entropy_avg": 0.034277915954589844,
|
489 |
+
"step": 115,
|
490 |
+
"val/clipfrac_avg": 0.0,
|
491 |
+
"val/num_eos_tokens": 8,
|
492 |
+
"val/ratio": 1.0012441873550415,
|
493 |
+
"val/ratio_var": 9.009366476675496e-05
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"episode": 6144,
|
497 |
+
"epoch": 0.08427174345398933,
|
498 |
+
"eps": 5,
|
499 |
+
"loss/policy_avg": -0.011602860875427723,
|
500 |
+
"loss/value_avg": 0.0,
|
501 |
+
"lr": 2.823529411764706e-06,
|
502 |
+
"objective/entropy": 1.418602466583252,
|
503 |
+
"objective/kl": 10.246469497680664,
|
504 |
+
"objective/non_score_reward": -1.0246469974517822,
|
505 |
+
"objective/rlhf_reward": -0.22599510848522186,
|
506 |
+
"objective/scores": 0.796875,
|
507 |
+
"policy/approxkl_avg": 0.31790149211883545,
|
508 |
+
"policy/clipfrac_avg": 0.2314453125,
|
509 |
+
"policy/entropy_avg": 0.028847694396972656,
|
510 |
+
"step": 120,
|
511 |
+
"val/clipfrac_avg": 0.0,
|
512 |
+
"val/num_eos_tokens": 9,
|
513 |
+
"val/ratio": 1.0009679794311523,
|
514 |
+
"val/ratio_var": 3.900106457876973e-05
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"episode": 6400,
|
518 |
+
"epoch": 0.08778306609790555,
|
519 |
+
"eps": 5,
|
520 |
+
"loss/policy_avg": -0.0157505851238966,
|
521 |
+
"loss/value_avg": 0.0,
|
522 |
+
"lr": 2.8158567774936066e-06,
|
523 |
+
"objective/entropy": 1.936393141746521,
|
524 |
+
"objective/kl": 10.550077438354492,
|
525 |
+
"objective/non_score_reward": -1.0550076961517334,
|
526 |
+
"objective/rlhf_reward": -0.252943217754364,
|
527 |
+
"objective/scores": 0.80078125,
|
528 |
+
"policy/approxkl_avg": 6.545133113861084,
|
529 |
+
"policy/clipfrac_avg": 0.341796875,
|
530 |
+
"policy/entropy_avg": 0.039971351623535156,
|
531 |
+
"step": 125,
|
532 |
+
"val/clipfrac_avg": 0.0,
|
533 |
+
"val/num_eos_tokens": 12,
|
534 |
+
"val/ratio": 1.0001187324523926,
|
535 |
+
"val/ratio_var": 0.00011527155584190041
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"episode": 6656,
|
539 |
+
"epoch": 0.09129438874182177,
|
540 |
+
"eps": 5,
|
541 |
+
"loss/policy_avg": -0.00908716581761837,
|
542 |
+
"loss/value_avg": 0.0,
|
543 |
+
"lr": 2.8081841432225065e-06,
|
544 |
+
"objective/entropy": 1.9167767763137817,
|
545 |
+
"objective/kl": 10.831771850585938,
|
546 |
+
"objective/non_score_reward": -1.0831772089004517,
|
547 |
+
"objective/rlhf_reward": -0.24270595610141754,
|
548 |
+
"objective/scores": 0.83984375,
|
549 |
+
"policy/approxkl_avg": 13.507976531982422,
|
550 |
+
"policy/clipfrac_avg": 0.25,
|
551 |
+
"policy/entropy_avg": 0.034499168395996094,
|
552 |
+
"step": 130,
|
553 |
+
"val/clipfrac_avg": 0.0,
|
554 |
+
"val/num_eos_tokens": 7,
|
555 |
+
"val/ratio": 1.0004911422729492,
|
556 |
+
"val/ratio_var": 0.00018595268193166703
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"episode": 6912,
|
560 |
+
"epoch": 0.094805711385738,
|
561 |
+
"eps": 5,
|
562 |
+
"loss/policy_avg": -0.017197387292981148,
|
563 |
+
"loss/value_avg": 0.0,
|
564 |
+
"lr": 2.800511508951407e-06,
|
565 |
+
"objective/entropy": 1.7237651348114014,
|
566 |
+
"objective/kl": 11.095592498779297,
|
567 |
+
"objective/non_score_reward": -1.1095592975616455,
|
568 |
+
"objective/rlhf_reward": -0.21057555079460144,
|
569 |
+
"objective/scores": 0.8984375,
|
570 |
+
"policy/approxkl_avg": 2.7560040950775146,
|
571 |
+
"policy/clipfrac_avg": 0.2841796875,
|
572 |
+
"policy/entropy_avg": 0.032952308654785156,
|
573 |
+
"step": 135,
|
574 |
+
"val/clipfrac_avg": 0.0,
|
575 |
+
"val/num_eos_tokens": 2,
|
576 |
+
"val/ratio": 0.9994020462036133,
|
577 |
+
"val/ratio_var": 3.074964843108319e-05
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"episode": 7168,
|
581 |
+
"epoch": 0.09831703402965422,
|
582 |
+
"eps": 5,
|
583 |
+
"loss/policy_avg": -0.012010859325528145,
|
584 |
+
"loss/value_avg": 0.0,
|
585 |
+
"lr": 2.792838874680307e-06,
|
586 |
+
"objective/entropy": 1.5862581729888916,
|
587 |
+
"objective/kl": 10.674396514892578,
|
588 |
+
"objective/non_score_reward": -1.0674396753311157,
|
589 |
+
"objective/rlhf_reward": -0.14433012902736664,
|
590 |
+
"objective/scores": 0.921875,
|
591 |
+
"policy/approxkl_avg": 1.1186727285385132,
|
592 |
+
"policy/clipfrac_avg": 0.2783203125,
|
593 |
+
"policy/entropy_avg": 0.0295562744140625,
|
594 |
+
"step": 140,
|
595 |
+
"val/clipfrac_avg": 0.0,
|
596 |
+
"val/num_eos_tokens": 13,
|
597 |
+
"val/ratio": 1.0007727146148682,
|
598 |
+
"val/ratio_var": 4.557183274300769e-05
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"episode": 7424,
|
602 |
+
"epoch": 0.10182835667357044,
|
603 |
+
"eps": 5,
|
604 |
+
"loss/policy_avg": -0.013728385791182518,
|
605 |
+
"loss/value_avg": 0.0,
|
606 |
+
"lr": 2.785166240409207e-06,
|
607 |
+
"objective/entropy": 1.5388869047164917,
|
608 |
+
"objective/kl": 10.359582901000977,
|
609 |
+
"objective/non_score_reward": -1.035958170890808,
|
610 |
+
"objective/rlhf_reward": -0.14511710405349731,
|
611 |
+
"objective/scores": 0.890625,
|
612 |
+
"policy/approxkl_avg": 0.5204602479934692,
|
613 |
+
"policy/clipfrac_avg": 0.283203125,
|
614 |
+
"policy/entropy_avg": 0.028924942016601562,
|
615 |
+
"step": 145,
|
616 |
+
"val/clipfrac_avg": 0.0,
|
617 |
+
"val/num_eos_tokens": 14,
|
618 |
+
"val/ratio": 1.056097149848938,
|
619 |
+
"val/ratio_var": 0.13372056186199188
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"episode": 7680,
|
623 |
+
"epoch": 0.10533967931748667,
|
624 |
+
"eps": 5,
|
625 |
+
"loss/policy_avg": -0.014945434406399727,
|
626 |
+
"loss/value_avg": 0.0,
|
627 |
+
"lr": 2.7774936061381074e-06,
|
628 |
+
"objective/entropy": 2.0769755840301514,
|
629 |
+
"objective/kl": 11.147063255310059,
|
630 |
+
"objective/non_score_reward": -1.11470627784729,
|
631 |
+
"objective/rlhf_reward": -0.08940108120441437,
|
632 |
+
"objective/scores": 1.0234375,
|
633 |
+
"policy/approxkl_avg": 0.5961493253707886,
|
634 |
+
"policy/clipfrac_avg": 0.3681640625,
|
635 |
+
"policy/entropy_avg": 0.037804603576660156,
|
636 |
+
"step": 150,
|
637 |
+
"val/clipfrac_avg": 0.0,
|
638 |
+
"val/num_eos_tokens": 13,
|
639 |
+
"val/ratio": 1.0033739805221558,
|
640 |
+
"val/ratio_var": 0.00030022990540601313
|
641 |
+
}
|
642 |
+
],
|
643 |
+
"logging_steps": 100,
|
644 |
+
"max_steps": 391,
|
645 |
+
"num_input_tokens_seen": 0,
|
646 |
+
"num_train_epochs": 1.3716104077797742,
|
647 |
+
"save_steps": 50,
|
648 |
+
"stateful_callbacks": {
|
649 |
+
"TrainerControl": {
|
650 |
+
"args": {
|
651 |
+
"should_epoch_stop": false,
|
652 |
+
"should_evaluate": false,
|
653 |
+
"should_log": false,
|
654 |
+
"should_save": true,
|
655 |
+
"should_training_stop": false
|
656 |
+
},
|
657 |
+
"attributes": {}
|
658 |
+
}
|
659 |
+
},
|
660 |
+
"total_flos": 0,
|
661 |
+
"train_batch_size": null,
|
662 |
+
"trial_name": null,
|
663 |
+
"trial_params": null
|
664 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f69fedf04484e314c878c0562873de1761b9262a2545636c76d80eb9a5506163
|
3 |
+
size 6840
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|