jialinselenasong commited on
Commit
6a5cd5c
·
verified ·
1 Parent(s): 0836125

Training complete

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: dmis-lab/biobert-v1.1
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: biobert-all
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # biobert-all
19
+
20
+ This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7750
23
+ - Precision: 0.5990
24
+ - Recall: 0.6572
25
+ - F1: 0.6268
26
+ - Accuracy: 0.8385
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 363 | 0.4337 | 0.5819 | 0.6535 | 0.6156 | 0.8427 |
58
+ | 0.4325 | 2.0 | 726 | 0.4422 | 0.5912 | 0.6675 | 0.6270 | 0.8438 |
59
+ | 0.2832 | 3.0 | 1089 | 0.4720 | 0.6010 | 0.6422 | 0.6209 | 0.8443 |
60
+ | 0.2832 | 4.0 | 1452 | 0.5342 | 0.6076 | 0.6522 | 0.6291 | 0.8454 |
61
+ | 0.1948 | 5.0 | 1815 | 0.5969 | 0.6059 | 0.6594 | 0.6315 | 0.8415 |
62
+ | 0.1315 | 6.0 | 2178 | 0.6428 | 0.6051 | 0.6551 | 0.6291 | 0.8408 |
63
+ | 0.0987 | 7.0 | 2541 | 0.6933 | 0.5933 | 0.6649 | 0.6270 | 0.8384 |
64
+ | 0.0987 | 8.0 | 2904 | 0.7353 | 0.5949 | 0.6633 | 0.6273 | 0.8390 |
65
+ | 0.0762 | 9.0 | 3267 | 0.7640 | 0.5920 | 0.6623 | 0.6252 | 0.8389 |
66
+ | 0.0628 | 10.0 | 3630 | 0.7750 | 0.5990 | 0.6572 | 0.6268 | 0.8385 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.40.1
72
+ - Pytorch 2.2.1+cu121
73
+ - Datasets 2.19.1
74
+ - Tokenizers 0.19.1